Skip to main content
Log in

Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We investigated the allelic nature and map locations of Hordeum vulgare (barley) homologs to three classes of Arabidopsis low temperature (LT) regulatory genes—CBFs, ICE1, and ZAT12—to determine if there were any candidates for winterhardiness-related quantitative trait loci (QTL). We phenotyped the Dicktoo × Morex (D×M) mapping population under controlled freezing conditions and in addition to the previously reported 5H-L Fr-H1 QTL, observed three additional LT tolerance QTLs on 1H-L, 4H-S, and 4H-L. We identified and assigned either linkage map or chromosome locations to 1 ICE1 homolog, 2 ZAT12 homologs, and 17 of 20 CBF homologs. Twelve of the CBF genes were located on 5H-L and the 11 with assigned linkage map positions formed 2 tandem clusters on 5H-L. A subset of these CBF genes was confirmed to be physically linked, validating the map position clustering. The tandem CBF clusters are not candidates for the D×M LT tolerance Fr-H1 QTL, as they are ~30 cM distal to the QTL peak. No LT tolerance QTL was detected in conjunction with the CBF gene clusters in Dicktoo × Morex. However, comparative mapping using common markers and BIN positions established the CBF clusters are coincident with reported Triticeae LT tolerance and COR gene accumulation QTLs and suggest one or more of the CBF genes may be candidates for Fr-H2 in some germplasm combinations. These results suggest members of the CBF gene family may function as components of winterhardiness in the Triticeae and underscore both the importance of extending results from model systems to economically important crop species and in viewing QTL mapping results in the context of multiple germplasm combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beales J, Laurie DA, Devos KM (2005) Allelic variation at the linked AP1 and PhyC loci in hexaploid wheat is associated but not perfectly correlated with vernalization response. Theor Appl Genet 110:1099–1107

    Article  PubMed  CAS  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Finn C, Chen THH, Hurry V (2005) The role of the CBF-dependent signaling pathway in woody perennials. In: Chen THH, Uemura M, Fujikawa S (eds) Cold hardiness in plants: molecular genetics, cell biology and physiology. CAB International, Oxon, pp 167–180

    Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Choi D-W, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise R (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  PubMed  CAS  Google Scholar 

  • Dal Bosco C, Busconi M, Govoni C, Baldi P, Stanca AM, Crosatti C, Bassi R, Cattivelli L (2003) cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport. Plant Physiol 131:793–802

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin A, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative reproductive transition in cereals. Plant Physiol 132:1849–1860

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Filichkin T, Marquez-Cedillo L, Szúcs P, Corey AE, Clark S, Henson C, Stuhldryer L, Doheny B, Helgesson J, Hayes PM (2005) Genetic characterization of 88Ab536, a unique barley germplasm. In: Plant and Animal Genome XIII, San Diego, CA

  • Fowler DB, Breton G, Limin AE, Mahfoozi S, Sarhan F (2001) Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol 127:1676–1681

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Tóth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  PubMed  CAS  Google Scholar 

  • Hayes PM, Blake TK, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36:66–71

    Article  PubMed  CAS  Google Scholar 

  • Hayes PM, Chen FQ, Corey A, Pan A, Chen THH, Baird E, Powell W, Thomas W, Waugh R, Bedo Z, Karsai I, Blake T, Oberthur L (1997) The Dicktoo × Morex population: a model for dissecting components of winterhardiness in barley. In: Li PH, Chen THH (eds) Plant cold hardiness. Plenum, New York, pp 77–87

    Google Scholar 

  • Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matus I, Rossi C, Sato K (2003) Genetic diversity for quantitatively inherited agronomic and malting quality traits. In: Von Bothmer R, Knupffer H, van Hintum T, Sato K (eds) Diversity in barley. Elsevier, Amsterdam, pp 201–226

    Chapter  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Google Scholar 

  • Karsai I, Mészáros K, Szűcs P, Hayes PM, Lang L, Bedo Z (1999) Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population. Plant Breed 118:399–408

    Article  Google Scholar 

  • Karsai I, Meszaros K, Lang L, Hayes PM, Bedo Z (2001) Multivariate analysis of traits determining adaptation in cultivated barley. Plant Breed 120:217–222

    Article  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer, Dordrecht, , pp 187–199

    Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  PubMed  Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell). Ann Bot 89:579–585

    Article  PubMed  CAS  Google Scholar 

  • Mahfoozi S, Limin AE, Hayes PM, Hucl P, Fowler DB (2000) Influence of photoperiod response on the expression of cold hardiness in wheat and barley. Can J Plant Sci 80:721–724

    Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900-910

    Article  CAS  Google Scholar 

  • Reichmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  PubMed  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szűcs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Cheng H, Skinner JS (2005) Structural organization of barley CBF genes coincident with a QTL for cold hardiness. In: Chen THH, Uemura M, Fujikawa S (eds) Cold hardiness in plants: molecular genetics, cell biology and physiology. CAB International, Oxon, pp 53–63

    Google Scholar 

  • Szűcs P (2003) Studies on the frost resistance of durum wheat and barley. PhD Dissertation, Agricultural Research Institute of the HAS

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet DOI: 10.1007/s00122-005-0144-7

  • Tuberosa R, Galiba G, Sanguineti MC, Noli E, Sutka J (1997) Identification of QTL influencing freezing tolerance in barley. Acta Agron Hung 45:413–417

    Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold regulated transcriptional activator Cbf3 is linked to the frost tolerance locus Fr-A2 on wheat chromosome 5A. Mol Gen Genome 269:60–67

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands

  • van Zee K, Chen FQ, Hayes PM, Close TJ, Chen THH (1995) Cold-specific induction of a dehydrin gene family member in barley. Plant Physiol 108:1233–1239

    PubMed  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • von Zitzewitz J, Szűcs P, Dubcovsky J, Yan L, Pecchioni N, Francia E, Casas A, Chen THH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2005a) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh, NC (http://www.statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ (2005b) Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in trans-activation. Plant Mol Biol 58:543–559

    Article  CAS  Google Scholar 

  • Xue GP (2002) Characterization of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res 30:e77

    Article  PubMed  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–83

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J 39:905–919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Tim Close (UC, Riverside) for sharing HvCBF-positive BAC information prior to publication; Alfonso Cuesta (EEAD-CSIC, Zaragoza) for QTL analyses suggestions; Enrico Francia (EICR, Fiorenzuola d’Arda) and Nicola Pecchioni (UMRE, Reggio Emilia) for sharing HvZAT EST information prior to publication; Andreas Graner (IPK, Gaterslaben), Robbie Waugh (SCRI, Dundee), and Andris Kleinhofs (WSU, Pullman) for supplying cDNA and BAC clones; and Ildikó Karsai, Ottó Veisz (ARI-HAS, Martonvásár) for supplying marker data and helping with the LT tests. This work was supported by an NSF Functional Genomics grant 0110124 and the USDA/CSREES United States Barley Genome Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Hayes.

Additional information

Communicated by E. Guiderdoni

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skinner, J.S., Szűcs, P., von Zitzewitz, J. et al. Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112, 832–842 (2006). https://doi.org/10.1007/s00122-005-0185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0185-y

Keywords

Navigation