Skip to main content
Log in

A new aluminum tolerance gene located on rye chromosome arm 7RS

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Rye has one of the most efficient groups of genes for aluminum tolerance (Alt) among cultivated species of Triticeae. This tolerance is controlled by, at least, three independent and dominant loci (Alt1, Alt2, and Alt3) located on chromosome arms 6RS, 3RS, and 4RL, respectively. The segregation of Alt genes and several random amplified polymorphic DNA (RAPD), Secale cereale inter-microsatellite (SCIM), and Secale cereale microsatellite (SCM) markers in three F2 between a tolerant cultivar (Ailés) and a non-tolerant inbred line (Riodeva) were studied. The segregation ratio obtained for aluminum tolerance in the three F2 populations analyzed was 3:1 (tolerant:non-tolerant), indicating that tolerance is controlled by one dominant locus. SCIM811 1376 was linked to an Alt gene in the three F2 populations studied, and three different SCIMs and one RAPD (SCIM811 1376 , SCIM812 626 , SCIM812 1138 , and OPQ4 725 ) were linked to the Alt gene in two F2 populations. This result indicated that the same Alt gene was segregating in the three crosses. SCIM819 1434 and OPQ4 578 linked to the tolerance gene in one F2 population were located using wheat–rye ditelosomic addition lines on the 7RS chromosome arm. The Alt locus is mapped between SCIM819 1434 and the OPQ4 578 markers. Two microsatellite loci (SCM-40 and SCM-86), previously located on chromosome 7R, were also linked to the Alt gene. Therefore, the Alt gene segregating in these F2 populations is new and probably could be orthologous to the Alt genes located on wheat chromosome arm 4DL, on barley chromosome arm 4HL, on rye chromosome arm 4RL, and rice chromosome 3. This new Alt gene located on rye chromosome arm 7RS was named Alt4. A map of rye chromosome 7R with the Alt4 gene, 16 SCIM and RAPD, markers and two SCM markers was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aniol A (1983) Aluminum uptake by roots of two winter wheat varieties of different tolerance to aluminum. Biochem Physiol Pflanzen 178:11–20

    CAS  Google Scholar 

  • Aniol A (1984) Introduction of aluminum tolerance into aluminum sensitive wheat cultivars. Z Pflanzenzuecht 93(4):331–339

    CAS  Google Scholar 

  • Aniol A (1990) Genetic of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant Soil 123:223–227

    Article  CAS  Google Scholar 

  • Aniol A (1991) Genetics of acid tolerant plants. In: Wright RJ (ed) Plant soil interactions at low pH. Kluwer, Dordrecht, pp 1007–1017

    Google Scholar 

  • Aniol A (2004) Chromosomal location of aluminum tolerance genes in rye. Plant Breed 123:132–136

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can J Genet Cytol 26:701–705

    Google Scholar 

  • Aniol A, Madej L (1996) Genetic variation for aluminum tolerance in rye. Vortr Pflanzen 35:201–211

    Google Scholar 

  • Basu U, McDonald JL, Archambault DJ, Good AG, Briggs KG, Aung T, Taylor GJ (1997) Genetic and physiological analysis of double-haploid, aluminum, resistant lines of wheat provide evidence for the involvement of a 23 kD, root exudates polypeptide in mediating resistance. Plant Soil 196:283–288

    Article  CAS  Google Scholar 

  • Campbell LG, Lafever HN (1981) Heritability of aluminum tolerance in wheat. Cereal Res Commun 9:281–287

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulates excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  PubMed  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    CAS  Google Scholar 

  • Fisher JA, Scott BJ (1987) Response to selection for aluminum tolerance. In: Searle PGE, Davey BG (eds) Priorities in soil/plant relations research for plant production. School of Crop Sciences, University of Sydney, Australia, pp 135–137

  • Foy CD (1983) The physiology of plant adaptation to mineral stress. Iowa State J Res 57:355–392

    CAS  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Common Soil Sci Plant Anal 19:959–987

    CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  CAS  PubMed  Google Scholar 

  • Gallego FJ (1997) Genética de la tolerancia al aluminio en centeno (Secale cereale L.). PhD Thesis, Universidad Complutense Madrid, pp 1–123

  • Gallego FJ, Benito C (1997) Genetic control of aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

    Article  CAS  Google Scholar 

  • Gallego FJ, Calles B, Benito C (1998) Molecular markers linked to the aluminum tolerance gene Alt1 in rye (Secale cereale L.). Theor Appl Genet 97:1104–1109

    Article  CAS  Google Scholar 

  • Haug A (1983) Molecular aspects of aluminum toxicity. CRC Crit Rev Plant Sci 1:345–373

    Google Scholar 

  • Hede AR, Skovmand B, Lopez-Cesati J (2001) Acid soils and aluminum toxicity. In: Reynolds MP, Ortiz-Monasterio JI, MacNab A (eds) Application of physiology in wheat breeding. DF: CYMMYT, Mexico, pp 172–182

    Google Scholar 

  • Kerridge PC, Kronstad WE (1968) Evidence of genetic resistance to aluminum toxicity in wheat (Triticum aestivum Vill., Host.). Agron J 60:710–711

    Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminum species. Plant Soil 134:167–178

    CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanism on aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev AV, Voylokov AV, Börner A (2001) A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein microsatellite and gene loci. Theor Appl Genet 102:709–717

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ (1987) Calmodulin levels are not responsible for aluminum tolerance in wheat. Aust J Plant Physiol 14:377–385

    CAS  Google Scholar 

  • Little R (1988) Plant soil interactions at low pH. In: Problem solving–the genetic approach. Commun Soil Sci Plant Anal 19:1239–1257

    CAS  Google Scholar 

  • Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in Triticale. Plant Physiol 122:687–694

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001a) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Ma X-F, Wanous MK, Houchins K, Rodríguez-Milla MA, Goicoechea PG, Wang Z, Xie M, Gustafson JP (2001b) Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523

    Article  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004). Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905–1914

    Article  CAS  PubMed  Google Scholar 

  • Manyowa NM, Miller TE, Forster BT (1988) Alien species as sources for aluminum tolerance genes for wheat, Triticum aestivum. Proceedings of the seventh international wheat genetics symposium, pp 851–857

  • Michelmore RW, Paran I, Kessell RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Miftahudin, Scoles GJ, Gustafson JP (2002) AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 104:626–631

    Article  CAS  Google Scholar 

  • Miftahudin, Scoles GJ, Gustafson JP (2004) Development of PCR-based codominant markers flanking the Alt3 gene in rye. Genome 47:231–248

    CAS  PubMed  Google Scholar 

  • Miftahudin, Chikmawati T, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110:906–913

    Article  PubMed  Google Scholar 

  • Minella E, Sorrells ME (1992) Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci 32:593–598

    CAS  Google Scholar 

  • Mugwira LM, Elgawhary SM, Patel SU (1978) Aluminum tolerance in triticale, wheat and rye as measured by root growth characteristics and aluminum concentrations. Plant Soil 50:681–690

    CAS  Google Scholar 

  • Naranjo T, Fernández.-Rueda P (1991) Homoeology of rye chromosome arms to wheat. Theor Appl Genet 82:577–586

    Article  Google Scholar 

  • Naranjo T, Fernandez-Rueda P, Maestra B (1997) Chromosome rearrangements and homoeologous pairing: implications for the introgression of alien genes into wheat. In: Lelley T (ed) Current topics in plant cytogenetics related to plant improvement. WUV-Universitätsverlag, Austria, pp 198–205

    Google Scholar 

  • Nguyen BD, Brar BS, Bui BC, Nguyen VT, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon griff., into indica rice (Oryza sativa L.). Thero Appl Genet 106:583–593

    CAS  Google Scholar 

  • Raman H, Moroni JS, Sato K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminum tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  CAS  PubMed  Google Scholar 

  • Rao MI, Zeigler RA, Vera R, Sarkarung S (1993) Selection and breeding for acid soil tolerance in crops. Bioscience 43:454–465

    Google Scholar 

  • Reid DA, Fleming AL, Foy CD (1971) A method for determining aluminum response of barley in nutrient solution in comparison to response in Al-toxic soil. Agron J 63:600–603

    CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Google Scholar 

  • Rodríguez-Milla MA, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  PubMed  Google Scholar 

  • Rognli OA, Devos KM, Chinoy CN, Harcourt RL, Atkinson MD, Gale MD (1992) RFLP mapping of rye chromosome 7R reveals a highly translocated chromosome relative to wheat. Genome 35:1026–1031

    CAS  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Slootmaker ALJ (1974) Tolerance to high soil acidity in wheat related species, rye and triticale. Euphytica 23:505–513

    Article  Google Scholar 

  • Somers DJ, Gustafson JP (1995) The expression of aluminum stress induced polypeptides in a population segregating for aluminum tolerance in wheat (Triticum aestivum L.). Genome 38:1213–1220

    CAS  Google Scholar 

  • Stølen O, Anderson S (1978) Inheritance of tolerance to low soil pH in barley. Hereditas 88:101–105

    Google Scholar 

  • Tang Y, Sorrells ME, Kochian LV, Garvin DF (2000) Identification of RFLP markers linked to barley aluminum tolerance gene Alp. Crop Sci 40:778–782

    CAS  Google Scholar 

  • Van Wambeke A (1976) Formation, distribution and consequences of acid soils in agricultural development. In: Wright MJ, Ferrari SA (eds) Proceedings of workshop on Plant adaptation to mineral stress in problem soils. Special Publication of the Cornell University Agricultural Experimental Station, Ithaca, pp 15–24

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants BOS 2000-0561 and AGL 200306470 from the Ministry of Education and Science of Spain (DGICYT) and Praxis XXII/15874/98 from the Ministry of Science and Technology (MCT) of Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Benito.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matos, M., Camacho, M.V., Pérez-Flores, V. et al. A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor Appl Genet 111, 360–369 (2005). https://doi.org/10.1007/s00122-005-2029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2029-1

Keywords

Navigation