Skip to main content
Log in

High transferability of bread wheat EST-derived SSRs to other cereals

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The increasing availability of expressed sequence tags (ESTs) in wheat (Triticum aestivum) and related cereals provides a valuable resource of non-anonymous DNA molecular markers. In this study, 300 primer pairs were designed from 265 wheat ESTs that contain microsatellites in order to develop new markers for wheat. Their level of transferability in eight related species [Triticum durum, T. monococcum, Aegilops speltoides, Ae. tauschii, rye (Secale cereale), barley (Hordeum vulgare), Agropyron elongatum and rice (Oryza sativa)] was assessed. In total, 240 primer pairs (80%) gave an amplification product on wheat, and 177 were assigned to wheat chromosomes using aneuploid lines. Transferability to closely related Triticeae species ranged from 76.7% for Ae. tauschii to 90.4% for T. durum and was lower for more distant relatives such as barley (50.4%) or rice (28.3%). No clear putative function could be assigned to the genes from which the simple sequence repeats (SSRs) were developed, even though most of them were located inside ORFs. blast analysis of the EST sequences against the 12 rice pseudo-molecules showed that the EST-SSRs are mainly located in the telomeric regions and that the wheat ESTs have the highest similarity to genes on rice chromosomes 2, 3 and 5. Interestingly, most of the SSRs giving an amplification product on barley or rice had a repeated motif similar to the one found in wheat, suggesting a common ancestral origin. Our results indicate that wheat EST-SSRs show a high level of transferability across distantly related species, thereby providing additional markers for comparative mapping and for following gene introgressions from wild species and carrying out evolutionary studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  Google Scholar 

  • Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  PubMed  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum Em. Thel and comparison with a map from cross. Theor Appl Genet 94:367–377

    Article  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa). Theor Appl Genet 100:713–722

    Article  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123

    Article  PubMed  Google Scholar 

  • Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F (1983) Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303:698–700

    Article  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43

    Article  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  Google Scholar 

  • Eujayl I, Sledge MK, Wand L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2003) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  Google Scholar 

  • Faris JD, Hean KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Li PX, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    PubMed  Google Scholar 

  • Grivet L, Glaszmann JC, Vincentz M, Silva F, Arruda P (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162

    Article  PubMed  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315–323

    Article  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002a) Characterisation of polymorphic microsatellite markers from Aegilops tauchii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002b) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed 121:17–25

    Article  Google Scholar 

  • Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  Google Scholar 

  • Jong E, van Z, Guthridge KM, Spangenberg GC, Forster JW (2002) Development and characterization of EST-derived simple sequence repeat (SSR) markers for pasture grass endophytes. Genome 46:277–290

    Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2003) Transferability of SSR markers among wheat, rye and triticale. Theor Appl Genet 108:1147–1150

    Article  PubMed  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  Google Scholar 

  • Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366

    Article  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Article  PubMed  Google Scholar 

  • Liu ZW, Biyashev RM, Maroof MAS (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876

    Google Scholar 

  • McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  PubMed  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    PubMed  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy F, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum). Theor Appl Genet 107:1235–1242

    Article  PubMed  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgants M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    PubMed  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 7:215–222

    Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    Google Scholar 

  • Rafalski S, Tingey A (1993) Genetics diagnostics in plant breeding: RAPDs, microsatellite and machines. Trends Genet 9:275–280

    Article  PubMed  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivannissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Article  PubMed  Google Scholar 

  • Röder MS, Korsun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of the wheat genome. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Sandhu D, Champoux JA, Bondareva SV, Gill KS (2001) Identification and physical location of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1738–1747

    Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley KR, Lewis R (eds) Chromosome manipulations and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Senior ML, Chin ECL, Lee M, Smith JSC (1996) Simple sequence repeat markers developed from maize found in the GenBank database: map construction. Crop Sci 36:1676–1683

    Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    Article  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion mapping system for the establishment of genetic map—physical map relationships in wheat. Funct Integr Genomics 4:12–25

    Article  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare). Theor Appl Genet 106:411–422

    PubMed  Google Scholar 

  • Thuillet AC, Bru D, David J, Roumet P, Santoni S, Sourdille P, Bataillon T (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum desf. Mol Biol Evol 19:122–125

    PubMed  Google Scholar 

  • Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97:1076–1082

    Article  Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrels ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Google Scholar 

  • Varshney RK, Thiel T, Stein N, Langridge P, Grande A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546

    PubMed  Google Scholar 

  • Weng Y, Tulee NA, Hart GE (2000) Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat (Triticum aestivum L-em Thel). Theor Appl Genet 100:519–527

    Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a Cytogenetically Based Physical Map of the Wheat Genome. Proc Natl Acad Sci USA 89:11307–11311

    PubMed  Google Scholar 

  • Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Cardle L, Ramsay L, Gibby M, Powell W (2003) Development of EST-SSRs from the Alpine Lady-fern, Athyrium distentifolium. Molecular Ecology Notes 3:287–290

    Article  Google Scholar 

  • Yu JK, La Rota M, Kantety RV, Sorrells ME (2004a) EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751

    Article  PubMed  Google Scholar 

  • Yu JK, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME (2004b) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank gratefully G. Gay and A. Loussert for growing the plants and S. Reader for providing the aneuploid lines. Gilles Charmet is also acknowledged for the statistical analyses. This work was funded by the China Scholarship Council (CSC). All experiments comply with the current laws of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bernard.

Additional information

Communicated by J.W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.Y., Bernard, M., Leroy, P. et al. High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111, 677–687 (2005). https://doi.org/10.1007/s00122-005-2041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2041-5

Keywords

Navigation