Skip to main content
Log in

Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genetic similarity between 150 accessions, representing 14 diploidand polyploid species of the Triticeae tribe, was investigated following the UPGMA clustering method. Seventy-three common wheat EST-derived SSR markers (EST-SSRs) that were demonstrated to be transferable across several wheat-related species were used. When diploid species only are concerned, all the accessions bearing the same genome were clustered together without ambiguity while the separation between the different sub-species of tetraploid as well as hexaploid wheats was less clear. Dendrograms reconstructed based on data of 16 EST-SSRs mapped on the A genome confirmed that Triticum aestivum and Triticum durum had closer relationships with Triticum urartu than with Triticum monococcum and Triticum boeoticum, supporting the evidence that T. urartu is the A-genome ancestor of polyploid wheats. Similarly, another tree reconstructed based on data of ten EST-SSRs mapped on the B genome showed that Aegilops speltoides had the closest relationship with T. aestivum and T. durum, suggesting that it was the main contributor of the B genome of polyploid wheats. All these results were expected and demonstrate thus that EST-SSR markers are powerful enough for phylogenetic analysis among the Triticeae tribe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appels R, Reddy P, McIntyre CL, Moran LB, Frankel OH, Clarke BC (1989) The molecular-cytogenetic analysis of grasses and its application to studying relationships among species of the Triticeae. Genome 31:122–133

    PubMed  CAS  Google Scholar 

  • Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum–Aegilops complex using wheat EST-SSRs. Plant Sci 166:349–356

    Article  CAS  Google Scholar 

  • Ben Amer IM, Börner A, Röder MS (2001) Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Genet Resour Crop Evol 48:579–585

    Article  Google Scholar 

  • Brown GR, Kadel EE III, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchor reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809

    PubMed  CAS  Google Scholar 

  • Chen K, Gray JC, Wildman SG (1975) Fraction I protein and the origin of polyploid wheats. Science 190:1304–1305

    CAS  Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Article  Google Scholar 

  • Dvorak J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • von Eig A (1929) Monographisch-Kretische Ubersicht der Gattung Aegilops. Repertorium specierum novarum regni vegetabilis 55:24–28

    Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43

    Article  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Feldman M (1978) New evidence on the origin of the B genome of wheat. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium, New Delhi, India, pp. 120–132

  • Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Gupta PK, Varshney RK (1999) Molecular markers for genetic fidelity during micropropagation and germplasm conservation. Curr Sci 77:1308–1310

    Google Scholar 

  • Hassan MD, Gustafson JP (1996) Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum). Genome 39:543–548

    Article  Google Scholar 

  • Huang SX, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99(12):8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–283

    Article  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 4:223–270

    Google Scholar 

  • Leisova L, Ovesna J (2001) The use of microsatellite analysis for the identification of wheat varieties. Czech J Genet Plant Breed 37:29–33

    Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  PubMed  CAS  Google Scholar 

  • Lilienfeld FA, Kihara H (1934) Genomanalyse bei Triticum und Aegilops von H. Kihara. V. Triticum timopheevi Zhuk. Cytologia 6:87–122

    Google Scholar 

  • Maestra B, Naranjo T (1998) Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor Appl Genet 97:181–186

    Article  Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89

    Google Scholar 

  • McIntyre CL (1988) Variation at isozyme loci in Triticeae. Plant Syst Evol 160:123–142

    Article  Google Scholar 

  • Miller TE (1990) Systematics and evolution. In: Lupton FGH (ed) Wheat breeding. Chapman and Hall Ltd, London, pp 1–30

    Google Scholar 

  • Monte JV, McIntyre CL, Gustafson JP (1993) Analysis of phylogenetic relationship in the Triticeae tribe using RFLP. Theor Appl Genet 83:649–655

    Article  Google Scholar 

  • Natarajan AT, Sharma NP (1974) Chromosome banding patterns and the origin of the B genome in wheat. Genet Res 24:103–108

    Article  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy F, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76:321–332

    Article  CAS  Google Scholar 

  • Plaschke J, Ganal M, Röder M (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Article  CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Rees H, Walters MR (1965) Nuclear DNA and the evolution of the wheat. Heredity 20:73–82

    Article  CAS  Google Scholar 

  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 2005 45:1–7

    Article  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke R, Vosman B, Ganal M (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome of wheat. Am J Bot 43:297–304

    Article  Google Scholar 

  • Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet 92:928–934

    Article  CAS  Google Scholar 

  • Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618

    Article  PubMed  CAS  Google Scholar 

  • Sax K (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7:513–552

    PubMed  CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    Article  CAS  Google Scholar 

  • Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97:1076–1082

    Article  CAS  Google Scholar 

  • Xu Y, Ma RC, Xie H, Liu JT, Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47(6):1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Qu LJ, Gu H, Gao W, Liu M, Chen J, Chen Z (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor Appl Genet 104:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank G. Gay and A. Loussert for growing the plants and J. David for providing with T. turgidum sub-species. G. Boutet and C. Pont are also greatly acknowledged for their help in managing the robotics of the genotyping platform. This work was funded by the China Scholarship Council (CSC). All these experiments comply with the current laws of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bernard.

Additional information

Communicated by M. Sorrells

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.Y., Ravel, C., Bernard, M. et al. Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theor Appl Genet 113, 407–418 (2006). https://doi.org/10.1007/s00122-006-0304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0304-4

Keywords

Navigation