Skip to main content
Log in

Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Earliness is one of the most important adaptation traits in plant breeding. Our purpose was to identify the genome regions of bread wheat involved in the control of earliness and its three components: photoperiod sensitivity (PS), vernalization requirement (VR) and intrinsic earliness (IE). A QTL meta-analysis was carried out to examine the replicability of QTL across 13 independent studies and to propose meta-QTL (MQTL). Initial QTL were projected on a recent consensus map (2004). Quality criteria were proposed to assess the reliability of this projection. These criteria were based on the distances between markers in the QTL regions. Chromosomes of groups 2 and 5 had a greater incidence on earliness control as they carry the known, major genes Ppd and Vrn. Other chromosome regions played an intermediate role in earliness control: 4A [heading date (HD) Meta-QTL], 4B (HD MQTL), 2B (VR MQTL) and 5B (IE MQTL). Markers at this four MQTL should prove helpful in marker-assisted selection, to better control earliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Belknap JK, Atkins AL (2001) The replicability of QTL for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 12:893–899

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  PubMed  CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgunov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Gervais L, Dedryver F, Morlais J-Y, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Glass GV (1976) Primary, secondary and meta-analysis of research. Educ Res 5:3–8

    Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Hanocq E, Sayers EJ, Niarquin M, Le Gouis J, Charmet G, Gervais L, Dedryver F, Duranton N, Marty N, Dufour P, Rousset M, Worland AJ (2003) A QTL analysis for earliness under field and controlled conditions in a bread wheat doubled-haploid population. In: Proceedings of the 12th EWAC conference, UK, p 57

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  PubMed  CAS  Google Scholar 

  • Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) Detection of an earliness per se quantitative trait locus in the proximal region of wheat chromosome 5AL. Plant Breed 118:391–394

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2002) Characterization of QEet.ocs-5A.1, a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breed 121:389–393

    Article  CAS  Google Scholar 

  • Khatkar MS, Thomson PC, Tammen I, Raadsma HW (2004) Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol 36:163–190

    Article  PubMed  CAS  Google Scholar 

  • Kulwal PL, Roy JK, Balyan HS, Gupta PK (2003) QTL mapping for growth and leaf characters in bread wheat. Plant Sci 164:267–277

    Article  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  PubMed  Google Scholar 

  • Law CN, Worland AJ (1997) Genetic analyses of some flowering time and adaptative traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosome 5A and 5D of wheat. Heredity 36:49–58

    Google Scholar 

  • Law CN, Sutka J, Worland AJ (1978) A genetic study of day-length response in wheat. Heredity 41:185–191

    Google Scholar 

  • Leonova I, Pestsova E, Salina E, Efremova T, Röder M, Börner A (2003) Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breed 122:209–212

    Article  CAS  Google Scholar 

  • Masle J, Doussinault G, Sun B (1989) Response of wheat genotypes to temperature and photoperiod in natural conditions. Crop Sci 29:712–721

    Article  Google Scholar 

  • Maystrenko OI (1980) Cytogenetic study of the growth habit and ear emergence time on chromosome 2B of wheat. In: Proceedings of the 14th international congress of genetics, vol 1, pp 267–282

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26:363–373

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schlegel R (1996) A compendium of reciprocal translocations in wheat. Wheat Inf Serv 83:35–46

    Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Am Nat 87:245–252

    Article  Google Scholar 

  • Shindo C, Sasakuma T, Watanabe N, Noda K (2002) Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome 45:563–569

    Article  PubMed  CAS  Google Scholar 

  • Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63

    Article  PubMed  CAS  Google Scholar 

  • Snape JW, Sarma R, Quarrie SA, Fish L, Galiba G, Sutka J (2001) Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120:309–315

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Stelmakh AF (1990) Geographic distribution of Vrn genes in landraces and improved varieties of spring bread wheat. Euphytica 45:113–118

    Google Scholar 

  • Stelmakh AF (1998) Genetic systems regulating flowering response in wheat. Euphytica 100:359–369

    Article  Google Scholar 

  • Syme JR (1968) Ear emergence of Australian, Mexican and European wheats in relation to time of sowing and their response to vernalization and day. Aust J Exp Agric Anim Husb 8:578–581

    Article  Google Scholar 

  • Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  PubMed  CAS  Google Scholar 

  • Van Berloo R (1999) GGT: software for the display of graphical genotypes. J Hered 90:328–329

    Article  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  CAS  Google Scholar 

  • Weller JL, Reid JB, Taylor SA, Murfet IC (1997) The genetic control of flowering in pea. Trends Plant Sci 2:412–418

    Article  Google Scholar 

  • Welsh JR, Keim DL, Pirasteh B, Richards RD (1973) Genetic control of photoperiod response in wheat. In: Proceedings of the 4th international wheat genetics symposium, Missouri, pp 879–884

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank M. Bernard and M. R. Perretant from the INRA Centre in Clermont-Ferrand, France, for kindly supplying data on the heading date and genotyping of the Eurêka × Renan population and genotyping data on Apache × Ornicar population, respectively. We are particularly grateful to A. J. Worland of JIC, Norwich, UK, and his team for generously supplying Mercia × Mercia (Ciano 67–2D) seeds. G. Charmet, INRA, Clermont-Ferrand and M. Rousset, INRA, Le Moulon, as well as the reviewers, are also thanked for their valuable comments and suggestions concerning this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hanocq.

Additional information

Communicated by A. Charcosset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanocq, E., Laperche, A., Jaminon, O. et al. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114, 569–584 (2007). https://doi.org/10.1007/s00122-006-0459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0459-z

Keywords

Navigation