Skip to main content
Log in

A worldwide bread wheat core collection arrayed in a 384-well plate

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Bread wheat (Triticum aestivum), one of the world’s major crops, is genetically very diverse. In order to select a representative sample of the worldwide wheat diversity, 3,942 accessions originating from 73 countries were analysed with a set of 38 genomic simple sequence repeat (SSR) markers. The number of alleles at each locus ranged from 7 to 45 with an average of 23.9 alleles per locus. The 908 alleles detected were used together with passport data to select increasingly large sub-samples that maximised both the number of observed alleles at SSR loci and the number of geographical origins. A final core of 372 accessions (372CC) was selected with this M strategy. All the different geographical areas and more than 98% of the allelic diversity at the 38 polymorphic loci were represented in this core. The method used to build the core was validated, by using a second set of independent markers [44 expressed sequence tag (EST)-SSR markers] on a larger sample of 744 accessions: 96.74% of the alleles observed at these loci had already been captured in the 372CC. So maximizing the diversity with a first set of markers also maximised the diversity at a second independent set of locus. To relate the genetic structure of wheat germplasm to its geographical origins, the two sets of markers were used to compute a dissimilarity matrix between geographical groups. Current worldwide wheat diversity is clearly divided according to wheat’s European and Asian origins, whereas the diversity within each geographical group might be the result of the combined effects of adaptation of an initial germplasm to different environmental conditions and specific breeding practices. Seeds from each accession of the 372CC were multiplied and are now available to the scientific community. The genomic DNA of the 372CC, which can be entirely contained in a 384-deep-well storage plate, will be a useful tool for future studies of wheat genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balfourier F, Charmet G, Prosperi JM, Goulard M, Monestiez P (1998) Comparison of different spatial strategies for sampling a core collection of natural populations of fodder crops. Genet Sel Evol 30(Suppl 1):215–235

    Google Scholar 

  • Balfourier F, Ravel C, Bochard AM, Exbrayat-Vinson F, Boutet G, Sourdille P, Dufour P, Charmet G (2006) Développement, utilisation et comparaison de différents types de marqueurs pour étudier la diversité parmi une collection de blé tendre. Actes du BRG 6:129–144

    Google Scholar 

  • Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    PubMed  CAS  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France)

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Franco G, Crossa J, Warburton M, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci (in press). doi:10.2135/cropsci2005.07-0201

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W, limensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–171

    Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) Mstrat: an algorithm for building germplasm core collections by maximising allelic or phenotypic richness. J Hered 92(1):93–94

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Theor Appl Genet 270:315–323

    CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic markers from T. tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Hao CY, Zhang XY, Wang LF, Dong YS, Shang XW, Jia JZ (2006) Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Mol Breed 17:69–77

    Article  CAS  Google Scholar 

  • van Hintum ThJL (1994) Comparison of marker systems and construction of a core collection in a pedigree of European spring barley. Theor Appl Genet 89:991–997

    Article  Google Scholar 

  • Hu J, Zhu J, Xu MH (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies base on the genotypic values of crops. Theor Appl Genet 101:264–268

    Article  CAS  Google Scholar 

  • Huaman Z, Aguilar C, Ortiz R (1999) Selecting a Peruvian sweet potato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theor Appl Genet 98:840–844

    Article  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Zhang H, Zeng Y, Yang Z, Shen S, Sun C, Wang X (2002) Studies on sampling schemes for establishment of core collection of rice landraces in Yunnan, China. Genet Res Crop Evol 49:67–74

    Article  CAS  Google Scholar 

  • Malosetti M, Abadie T (2001) Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genet Res Crop Evol 48:381–390

    Article  Google Scholar 

  • Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Resour Crop Evol 47:515–526

    Article  Google Scholar 

  • McKhann HI, Camilleri C, Berard A, Bataillon T, David JL, Reboud X Le Corre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy F, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield, Science Publishers, Montpellier, pp 43–76

  • Pritchard JK, Stephens M, Donnelly P (2002) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Roussel V (2005) Analyse de la diversité et de la structuration génétique d’une collection de blés tendres (Triticum aestivum) à l’aide de marqueurs agro-morphologiques, biochimiques et moléculaires, Thèse de doctorat de l’ENSAR, 127pp

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  PubMed  CAS  Google Scholar 

  • Shoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  Google Scholar 

  • Spagnoletti PL, Qualset CO (1993) Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theor Appl Genet 87:295–304

    Article  Google Scholar 

  • Strelchenko P, Street K, Mitrofanova O, Mackay M, Balfourier F (2005) Genetic diversity among hexaploid wheat landraces with different geographical origins revealed by microsatellites: comparison with AFLP, and RAPD data. In: Proceedings of 4th International Cropscience Congress, Brisbane, Australia, 26 Sep–1 Oct 2004. | ISBN 1 920842 20 9 |

  • Tixier MH, Sourdille P, Charmet G, Gay G, Jaby C, Cadalen T, Bernard S, Nicolas P, Bernard M (1998) Detection of QTLs for crossability in wheat using double-haploid population. Theor Appl Genet 97:1076–1082

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Sing S (2002) Developing a mini core of peanut for utilisation of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the French Ministry of Research and Technology and the Ministry of Finance (ASG programme: Cereal Genotyping and Food Quality). Part of this work was also funded by INRA in the framework of INRA–VIR cooperative programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Balfourier.

Additional information

Communicated by M. Bohn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (RTF 24.8 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balfourier, F., Roussel, V., Strelchenko, P. et al. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114, 1265–1275 (2007). https://doi.org/10.1007/s00122-007-0517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0517-1

Keywords

Navigation