Skip to main content

Advertisement

Log in

Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Lower market prices and environmental concerns now orientate wheat (Triticum aestivum L.) breeding programs towards low input agricultural practices, and more particularly low nitrogen (N) input management. Such programs require knowledge of the genetic determination of plant reaction to N deficiency. Our aim was to characterize the genetic basis of N use efficiency and genotype × N interactions. The detection of QTL for grain yield, grain protein yield and their components was performed on a mapping population of 222 doubled haploid lines (DH), obtained from the cross between an N stress tolerant variety and an N stress sensitive variety. Experiments on the population were carried out in seven different environments, and in each case under high (N+) and low (N) N supplies. In total, 233 QTL were detected for traits measured in each combination of environment and N supply, for “global” interaction variables (N+–N and N/N+), for sensitivity to N stress and for performance under N-limited conditions which were assessed using factorial regression parameters. The 233 QTL were detected on the whole genome and clustered into 82 genome regions. The dwarfing gene (Rht-B1), the photoperiod sensitivity gene (Ppd-D1) and the awns inhibitor gene (B1) coincided with regions that contained the highest numbers of QTL. Non-interactive QTL were detected on linkage groups 3D, 4B, 5A1 and 7B2. Interactive QTL were revealed by interaction or factorial regression variables (2D2, 3D, 5A1, 5D, 6A, 6B, 7B2) or by both variables (1B, 2A1, 2A2, 2D1, 4B, 5A2, 5B). The usefulness of QTL meta-analysis and factorial regression to study QTL × N interactions and the impact of Rht-B1, Ppd-D1 and B1, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187–195

    Article  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) Biomercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) Zmap-a QTL cartographer. Quel J 22:65–66

    Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2002) QTL Cartographer version 1.16

  • Bertin P, Gallais A (2001) Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines. II-QTL detection and coincidences. Maydica 46:53–68

    Google Scholar 

  • Boisson M, Mondon K, Torney V, Nicot N, Lainé A-L, Bahrman N, Gouy A, Daniel-Vedele F, Hirel B, Sourdille P, Dardevet M, Ravel C, Le Gouis J (2005) Partial sequences of nitrogen metabolism genes in hexaploid wheat. Theor Appl Genet 110:932–940

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Brancourt-Hulmel M, Lecomte C, Denis JB (2001) Choosing probe genotypes for the analysis of genotype–environment interaction in winter wheat trials. Theor Appl Genet 103:371–382

    Article  CAS  Google Scholar 

  • Brancourt-Hulmel M, Heumez E, Pluchard P, Beghin D, Depatureaux C, Giraud A, Le Gouis J (2005) Indirect versus direct selection of winter wheat for low input or high input levels. Crop Sci 45:1427–1431

    Article  Google Scholar 

  • Campbell BT, Baezinger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Campbell BT, Baenziger PS, Eskridge KM, Budak H, Streck NA, Weiss A, Gill KS, Erayman M (2004) Using environmental covariates to explain genotype × environment and QTL × environment interactions for agronomic traits on chromosomes 3A of wheat. Crop Sci 44:620–627

    Google Scholar 

  • Charmet G, Robert N, Branlard G, Linossier L, Martre P, Triboï E (2005) Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels. Theor Appl Genet 111:540–550

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crossa J, Vargas M, Van Eeuwijk FA, Jiang C, Edmeades GO, Hoisington D (1999) Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet 99:611–625

    Article  Google Scholar 

  • Denis JB (1988) Two ways analysis using covariates. Stat 19:123–132

    Article  Google Scholar 

  • Dhugga KS, Waines JG (1989) Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Sci 29:1232–1239

    Article  Google Scholar 

  • Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042. Initiales des auteurs

    Article  PubMed  CAS  Google Scholar 

  • Emebiri LC, Moody DB (2005) Heritable basis for some genotype–environment stability statistics: inferences from QTL analysis of heading date in two-rowed barley. Field Crops Res (in press), Corrected Proof. Réf plus complètes

  • Fang P, Wu P (2001) QTL × N-level interaction for plant height in rice (Oriza Sativa L.). Plant Soil 236:237–242

    Article  CAS  Google Scholar 

  • Félix I, Loyce C, Bouchard C, Meynard J-M, Bernicot MH, Rolland B, Haslé H (2002) Associer des variétés rustiques à des niveaux d’intrants réduits. Intérêts économiques et perspectives agronomiques. Persp Agric 279:30–35

    Google Scholar 

  • Félix I, Loyce C, Bouchard C, Meynard J-M, Rolland B, Bernicot MH, Haslé H (2003) Une voie pour s’adapter aux baisses du prix du blé: Des variétés rustiques conduites à faible coût. Persp Agric 290:22–29

    Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in plant-breeding programme. Aust J Agric Res 14:742–754

    Article  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    Article  PubMed  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C (2004) Colocation between a gene encoding thebZip factor SPA and a eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome 47:705–713

    Article  PubMed  CAS  Google Scholar 

  • Habash D, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation devolpment and yield. Theor Appl Genet 114:403–419

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Justes E, Mary B, Meynard J-M, Machet J-M, Thelier-Huche L (1994) Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot 74:397–407

    Article  CAS  Google Scholar 

  • Kjaer B, Jensen J (1995) The inheritance of nitrogen and phosphorus content in barley analysed by genetic markers. Hereditas 123:109–119

    Article  CAS  Google Scholar 

  • Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Le Gouis J (2006a) Estimation of genetic parameters of a DH wheat population grown at different N stress levels characterized by probe genotypes. Theor Appl Genet 112:797–807

    Article  PubMed  CAS  Google Scholar 

  • Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B (2006b) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  PubMed  CAS  Google Scholar 

  • Le Gouis J, Pluchard P (1996) Genetic variation for nitrogen use efficiency in winter wheat (Triticum aestivum L.). Euphytica 92:221–224

    Article  Google Scholar 

  • Le Gouis J, Jeuffroy M-H, Heumez E, Pluchard P (1998) Différences variétales pour le fonctionnement du blé tendre en conditions de nutrition azotée suboptimales. In: Maillard P, Bonhomme R (eds) Fonctionnement des peuplements végétaux sous contraintes environnementales, vol 93. INRA Editions (les colloques n 93), Paris, pp 531–538

    Google Scholar 

  • Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur J Agron 12:163–173

    Article  CAS  Google Scholar 

  • Leflon M, Lecomte C, Barbottin A, Jeuffroy M-H, Robert N, Brancourt-Hulmel M (2005) Characterization of environments and genotypes for analyzing genotype × environment interaction. Some recent advances in winter wheat and prospects for QTL detection. J Crop Imp 14:249–298

    Article  Google Scholar 

  • Lewicki S, Chery J (1992) Eude de l’accumulation et de la remobilisation de l’azote chez l’orge (Hordeum vulgare L.): comparaisonde variétés possédant ou non le gène de semi-nanisme. Agronomie 12:235–245

    Google Scholar 

  • Lian X, Xing Y, Yan H, Xu C, Li X, Zhang Q (2005) QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 112:85–96

    Article  PubMed  CAS  Google Scholar 

  • Liu SX, Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46:817–823

    Article  PubMed  CAS  Google Scholar 

  • Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    Article  PubMed  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA (2004) Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137:139–145

    Article  CAS  Google Scholar 

  • Mardi M, Buerstmayer H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breed 124:329–333

    Article  Google Scholar 

  • Mickelson S, See D, Meyer FD, Garner JP, Foster CR, Blake TK, Fischer AM (2003) Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J Exp Bot 54:801–812

    Article  PubMed  CAS  Google Scholar 

  • Miralles DJ, Katz SD, Colloca A, Slafer GA (1998) Floret development in near isogenic wheat lines differing in plant height. Field Crop Res 59:21–30

    Article  Google Scholar 

  • Motzo R, Giunta F (2002) Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat. Aust J Agric Res 53:1285–1293

    Article  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Prasad M, Kumar N, Kulwal PL, Röder MS, Balyan HS, Dhaliwal HS, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667

    PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, YessimbekovaM, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Raugh BL, Basten C, Buckler ES (2002) Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor Appl Genet 104:743–750

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA (2000) Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res 51:235–245

    Article  CAS  Google Scholar 

  • Van Eeuwijk FA (1995) Linear and bilinear models for the analysis of multi-environment trials.1. An inventory of models. Euphytica 84:1–7

    Article  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter weat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Yadav R, Bidinger RF, Hash C, Yadav Y, Yadav O, Bhatnagar S, Howarth C (2003) Mapping and characterisation of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    PubMed  CAS  Google Scholar 

  • Yan J, Zhu J, He C, Benmoussa M, Wu P (1999) Molecular marker-assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci 39:538–544

    Article  Google Scholar 

  • Yang ZP, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work received support from the Picardie Region, Arvalis-Institut du Végétal and the Génoplante French Genomics project. We would like to thank P. Pluchard, C. Quandalle and Dr. P. Brabant for development of the population, and G. Charmet, P. Dufour, and F. Dedryver for the molecular map. We also thank J.B. Beaufumé and the staff at the Chartainvilliers experimental farm (Nickerson), the staff at Le Moulon experimental farm (INRA) and P. Bérard and the staff at the Clermont-Ferrand experimental farm (INRA). The authors also wish to thank N. Galic, D. Bouthors, D. Brasseur and J.-P. Noclercq for their helpful technical assistance. We also want to thank the reviewers for their helpful comments and propositions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Laperche.

Additional information

Communicated by I. Romagosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2007_575_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laperche, A., Brancourt-Hulmel, M., Heumez, E. et al. Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115, 399–415 (2007). https://doi.org/10.1007/s00122-007-0575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0575-4

Keywords

Navigation