Skip to main content
Log in

SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Simple sequence repeats (SSRs) are abundant and frequently highly polymorphic in transcribed sequences and widely targeted for marker development in eukaryotes. Sunflower (Helianthus annuus) transcript assemblies were built and mined to identify SSRs and insertions-deletions (INDELs) for marker development, comparative mapping, and other genomics applications in sunflower. We describe the spectrum and frequency of SSRs identified in the sunflower EST database, a catalog of 16,643 EST-SSRs, a collection of 484 EST-SSR and 43 EST-INDEL markers developed from common sunflower ESTs, polymorphisms of the markers among the parents of several intraspecific and interspecific mapping populations, and the transferability of the markers to closely and distantly related species in the Compositae. Of 17,904 unigenes in the transcript assembly, 1,956 (10.9%) harbored one or more SSRs with repeat counts of n ≥ 5. EST-SSR markers were 1.6-fold more polymorphic among exotic than elite genotypes and 0.7-fold less polymorphic than non-genic SSR markers. Of 466 EST-SSR or INDEL markers screened for cross-species amplification and polymorphisms, 413 (88.6%) amplified alleles from one or more wild species (H. argophyllus, H. tuberosus, H. anomalus, H. paradoxus, and H. deserticola), whereas 69 (14.8%) amplified alleles from safflower (Carthamus tinctorius) and 67 (14.4%) amplified alleles from lettuce (Lactuca sativa); hence, only a fraction were transferable to distantly related genera in the Compositae, whereas most were transferable to wild relatives of H. annuus. Several thousand additional SSRs were identified in the EST database and supply a wealth of templates for EST-SSR marker development in sunflower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acquadro A, Portis E, Lee D, Donini P, Lanteri S (2005) Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48:217–225

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W (1996) Local alignment statistics. Meth Enzymol 266:460–480

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register JC, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547

    Article  PubMed  CAS  Google Scholar 

  • Ben C, Hewezi T, Jardinaud MF, Bena F, Ladouce N, Moretti S, Tamborindeguy C, Liboz T, Petitprez M, Gentzbittel L (2005) Comparative analysis of early embryonic sunflower cDNA libraries. Plant Mol Biol 57:255–270

    Article  PubMed  Google Scholar 

  • Burke JM, Lai Z, Salmaso M, Nakazato T, Tang S, Heesacker A, Knapp SJ, Rieseberg LH (2004) Comparative mapping and rapid karyotypic evolution in the genus Helianthus. Genetics 167:449–457

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580

    Article  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arús P, Delseny M, Barnes S (2003) Plant genome archaeology: evidence for conserved ancestral chromosome segments in dicotyledonous plant species. Plant Biotechnol J 1:91–99

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  PubMed  CAS  Google Scholar 

  • Fernandez P, Paniego N, Lew S, Hopp HE, Heinz RA (2003) Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project. BMC Genomics 30:40–49

    Article  Google Scholar 

  • Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jagas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol Skr 55:343–374

    Google Scholar 

  • Gandhi S, Heesacker AF, Freeman CA, Argyris J, Bradford K, Knapp SJ (2005) The self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower. Theor Appl Genet 111:619–629

    Article  PubMed  CAS  Google Scholar 

  • Green P (1996) PHRAP (http://www.phrap.org)

  • Guo W, Wang W, Zhou B, Zhang T (2006) Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 112:1573–1581

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439

    Article  PubMed  CAS  Google Scholar 

  • Hass CG, Tang S, Leonard S, Traber MG, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–782

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Michaels HJ, Palmer JD (1991) Phylogeny and character evolution in the Asteraceae based on chloroplast DNA restriction site mapping. Syst Bot 16:98–115

    Article  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    PubMed  CAS  Google Scholar 

  • Kiers AM, Mes TH, van der Meijden R, Bachmann K (2000) A search for diagnostic AFLP markers in Cichorium species with emphasis on endive and chicory cultivar groups. Genome 43:470–476

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Heber D, Still DW (2004) Genetic diversity of Echinacea species based upon amplified fragment length polymorphism markers. Genome 47:102–111

    Article  PubMed  Google Scholar 

  • Kolkman J, Slabaugh MB, Bruniard J, Berry S, Bushman SB, Olungu C, Maes N, Abratti G, Zambelli A, Miller JF, Leon A, Knapp SJ (2004) Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ (2007) Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 177:457–468

    Article  PubMed  CAS  Google Scholar 

  • Kozik, A, Michelmore RW, Knapp SJ, Matvienko MS, Rieseberg L, Lin H, van Damme M, Lavelle D, Chevalier P, Ziegle J, Ellison P, Kolkman J, Slaubaugh MB, Livingston K, Zhou LZ, Church S, Edberg S, Jackson L, Bradford KJ (2002) Sunflower and lettuce ESTs developed by the Compositae Genome Program (http://cgpdb.ucdavis.edu/)

  • Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005a) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH (2005b) Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171:291–303

    Article  PubMed  CAS  Google Scholar 

  • Landry BS, Kesseli RV, Farrara B, Michelmore RW (1987) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance, and morphological markers. Genetics 116:331–337

    PubMed  CAS  Google Scholar 

  • Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330

    Article  PubMed  CAS  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Ott J (1999) Analysis of human genetic linkage. Johns Hopkins Univ Press, Baltimore

    Google Scholar 

  • Paniego N, Echaide M, Munoz M, Fernandez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suarez EY, Hopp HE (2002) Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome 45:34–43

    Article  PubMed  CAS  Google Scholar 

  • Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, el-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Genet Genomics 274:428–441

    Article  PubMed  CAS  Google Scholar 

  • Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381–388

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Kunze R, de Vries S, Bisseling T (1994) Isolation of total, poly (A) and polysomal RNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Norwell, pp 1–13

    Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    PubMed  CAS  Google Scholar 

  • Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, de Kochko A, Hamon P (2006) SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Mol Genet Genomics 276:436–449

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002a) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002b) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333

    Article  CAS  Google Scholar 

  • Raina SN, Sharma S, Sasakuma T, Kishii M, Vaishnavi S (2005) Novel repeated DNA sequences in safflower (Carthamus tintorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J Hered 96:424–429

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. Am J Bot 78:1218–1237

    Article  Google Scholar 

  • Rieseberg LH, Beckstrom-Sternberg SM, Liston A, Arias DM (1991) Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot 16:50–76

    Article  Google Scholar 

  • Saha MC, Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Schuppert GF, Tang S, Slabaugh MB, Knapp SJ (2006) The sunflower high-oleic mutant Ol carries variable tandem repeats of FAD2–1, a seed-specific oleoyl-phosphatidyl choline desaturase. Mol Breed 17:241–256

    Article  CAS  Google Scholar 

  • Tamborindeguy C, Ben C, Liboz T, Gentzbittel L (2004) Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower. Mol Genet Genomics 271:367–375

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Knapp SJ (2003) Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor Appl Genet 106:990–1003

    PubMed  CAS  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    PubMed  CAS  Google Scholar 

  • Tang S, Hass CG, Knapp SJ (2006) Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6- phytyl-1, 4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:783–799

    Article  PubMed  CAS  Google Scholar 

  • Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39:277–287

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Rieseberg L, Michelmore R, Kesseli R (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173:2227–2235

    Article  PubMed  CAS  Google Scholar 

  • Van Cutsem P, du Jardin P, Boutte C, Beauwens T, Jacqmin S, Vekemans X (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor Appl Genet 107:713–718

    Article  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Vilatersana R, Garnatje T, Susanna A, Garcia-Jacas N (2005) Taxonomic problems in Carthamus (Asteraceae) RAPD markers and sectional classification. Bot J Linn Soc 147:375–383

    Article  Google Scholar 

  • Yu JK, Mangor J, Thompson L, Edwards KJ, Slabaugh MB, Knapp SJ (2002) Allelic diversity of simple sequence repeat markers among elite inbred lines in cultivated sunflower. Genome 45:652–660

    Article  PubMed  CAS  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Webb DM, Thompson L, Edwards KJ, Berry S, Leon A, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for sunflower. Crop Sci 43:367–387

    CAS  Google Scholar 

  • Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B, Sorrells ME (2004a) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

  • Yu JK, La Rota M, Kantety RV, Sorrells ME (2004b) EST-derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Science Foundation Plant Genome Program (No. 0421630) and United States Department of Agriculture Plant Genome Program (No. 2000-04292) to S.J.K, R.W.M, and L.H.R, and Advanta Seeds, Pioneer Hi-Bred International, Syngenta, and the Paul C. Berger Endowment to S.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Knapp.

Additional information

Communicated by M. Sorrells.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2008_841_MOESM1_ESM.xls

Supplemental Table 1 SSR motifs, repeat counts, reference sequences, and other supporting data for 16,643 dinucleotide, trinucleotide, and tetranucleotide repeats identified in an assembly of 89,225 sunflower ESTs downloaded from GenBank dbEST on 8-25-2005 (XLS 2900 kb)

122_2008_841_MOESM2_ESM.xls

Supplemental Table 2 DNA marker, EST, and contig names, DNA marker types, and putative functions for SNP, SSR, and INDEL markers (HT1-HT1058) developed from sunflower ESTs (XLS 144 kb)

122_2008_841_MOESM3_ESM.xls

Supplemental Table 3 SSR motifs and repeat counts, Compositae Genome Program Database (CGPdb) reference sequence identifiers, primer sequences, and annealing temperatures for 527 sunflower EST-SSR and INDEL markers (XLS 208 kb)

122_2008_841_MOESM4_ESM.xls

Supplemental Table 4 EST-SSR and INDEL marker allele lengths (bp) and heterozygosities among common and wild sunflower, lettuce, prickly lettuce, and safflower germplasm accessions (XLS 505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heesacker, A., Kishore, V.K., Gao, W. et al. SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theor Appl Genet 117, 1021–1029 (2008). https://doi.org/10.1007/s00122-008-0841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0841-0

Keywords

Navigation