Skip to main content
Log in

Resistance to Thielaviopsis basicola in the cultivated A genome cotton

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Black root rot (BRR), incited by the soilborne pathogen Thielaviopsis basicola has the potential to cause significant economic loss in cotton (Gossypium spp.) production. Cultivated tetraploids of cotton (G. hirsutum and G. barbadense) are susceptible although resistant types have been identified in a possible tetraploid progenitor, G. herbaceum. Genetic mapping was used to detect the chromosomal locations of quantitative trait loci (QTL) that confer resistance to the BRR pathogen. A population of F2 individuals (G. herbaceum × G. arboreum) and F2:3 progeny families were examined. Phenotypic variation between resistant and susceptible reactions could be explained partly by three QTL. The BRR5.1, BRR9.1, and BRR13.1 QTL each explained 19.1, 10.3 and 8.5% of the total phenotypic variation, respectively. The combination of all three in a single genetic model explained 32.7% of the phenotypic variation. Comparative analysis was conducted on significant QTL regions to deduce the cotton–Arabidopsis synteny relationship and examine the correspondence between BRR QTL and Arabidopsis pathogen defense genes. Totally 20 Arabidopsis synteny segments corresponded within one of three BRR QTL regions. Each synteny segment contains many potential Arabidopsis candidate genes. A total of 624 Arabidopsis genes, including 22 pathogen defense and 36 stress response genes, could be placed within the syntenic regions corresponding to the BRR QTL. Fine mapping is needed to delineate each underlying BRR R-gene and possible Arabidopsis orthologs. Research and breeding activities to examine each QTL and underlying genes in Upland cotton (G. hirsutum) are ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationship of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229

    Article  CAS  Google Scholar 

  • Beasley JO (1940) The origin of American tetraploid Gossypium species. Am Nat 74:285–286

    Article  Google Scholar 

  • Beasley JO (1942) Meiotic chromosome behavior in species, species hybrids, haploids, and induced polyploids of Gossypium. Genetics 27:25–54

    PubMed  CAS  Google Scholar 

  • Benton MJ (1993) The fossil record, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Bird LS (1982) The MAR (multi-adversity resistance) system for genetic improvement of cotton. Plant Dis 66:172–176

    Google Scholar 

  • Bird LS (1986) Half a century of dynamics and control of cotton disease: bacterial blight. In: Proceedings of the beltwide cotton Conference, Las Vegas, NV. 4–9 January 1986. National Cotton Council of America, Memphis, pp 24–33

  • Blasingame D (2006) 2005 Cotton disease loss estimate. In: Proceedings of the beltwide Cotton Conference, San Antonio, TX. 3–6 January 2006. National Cotton Council of America, Memphis, pp 155–157

  • Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590

    Article  CAS  Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  CAS  Google Scholar 

  • Calabrese PP, Chakravarty S, Vision TJ (2003) Fast identification and statistical evaluation of segmental homologies in comparative maps. Bioinformatics 19:i74–i80

    Article  PubMed  Google Scholar 

  • Clayton EE (1969) The study of resistance to the black root rot disease of tobacco. Tob Sci 13:30–37

    Google Scholar 

  • Desai A, Chee PW, Rong J, May OL, Paterson AH (2006) Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49:336–345

    Article  PubMed  Google Scholar 

  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272:308–327

    Article  PubMed  CAS  Google Scholar 

  • Hood ME, Shew HD (1996) Pathogenesis of Thielaviopsis basicola on a susceptible and a resistant cultivar of burley tobacco. Phytopathology 86:38–44

    Article  Google Scholar 

  • Jiang CX, Wright RJ, El-zik K, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA 95:4419–4424

    Article  PubMed  CAS  Google Scholar 

  • Kaufman H, Wheeler T, Graves R, Schuster G, Kidd P, Siders K (1998) Large plot performance of seedling disease seed treatment fungicides. In: Proceedings of the beltwide cotton conference, San Diego, CA. 5–9 January 1998. National Cotton Council of America, Memphis, TN, pp 149–152

  • Knight RL (1948) The genetics of blackarm resistance. VI. Transference of resistance from Gossypium arboreum to G. barbadense. J Genet 48:359–369

    Article  PubMed  CAS  Google Scholar 

  • Knight RL (1955) Cotton breeding in the Sudan. Emp J Exp Agric 21:168–184

    Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination value. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Levine N (2002) CrimeStat: a spatial statistics program for the analysis of crime incident locations (v 2.0). Ned Levine & Associates, Houston, TX, and the National Institute of Justice, Washington, DC

  • Menzel MY, Brown MS (1954) The significance of multivalent formation in three-species Gossypium hybrids. Genetics 39:546–557

    PubMed  CAS  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Minton EB, Garber RH (1983) Controlling the seedling disease complex of cotton. Plant Dis 67:115–118

    Article  Google Scholar 

  • Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123

    CAS  Google Scholar 

  • Reddy OUK, Pepper AE, Abdurakhmonov IY, Saha S, Jenkins JN, Brooks TD, Bolek Y, El-Zik KM (2001) New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 5:103–113

    Google Scholar 

  • Robinson AF, Bell AA, Dighe ND, Menz MA, Nichols RL, Stelly DM (2007) Introgression of resistance to nematode Rotylenchulus reniformis into Upland Cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Sci 47:1865–1877

    Article  Google Scholar 

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin D, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed  CAS  Google Scholar 

  • Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH (2005) Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Res 15:1198–1210

    Article  PubMed  CAS  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, Lloyd May O, Wayne Smith C, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  PubMed  CAS  Google Scholar 

  • Rothrock CS (1992) Influence of soil temperature, water, and texture on Thielaviopsis basicola and black root rot of cotton. Phytopathology 82:1202–1206

    Article  Google Scholar 

  • Rothrock CS (1997) Prevalence and distribution of Thielaviopsis basicola. In: Proceedings of the beltwide cotton conference, New Orleans, LA. 6–10 January 1997. National Cotton Council of America, Memphis, pp 75–77

  • Shen X, Becelaere GV, Kumar P, Davis RF, May OL, Chee P (2006) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet 113:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Walker NR, Kirkpatrick TL, Rothrock CS (1998) Interaction between Meloidogyne incognita and Thielaviopsis basicola on cotton (Gossypium hirsutum). J Nematol 30:415–422

    CAS  PubMed  Google Scholar 

  • Walker NR, Kirkpatrick TL, Rothrock CS (1999) Effect of temperature on and histopathology of the interaction between Meloidogyne incognita and Thielaviospis basicola on cotton. Phytopathology 89:613–617

    Article  PubMed  CAS  Google Scholar 

  • Walker NR, Kirkpatrick TL, Rothrock CS (2000) Influence of Meloidogyne incognita and Thielaviopsis basicola populations on early-season disease development and cotton growth. Plant Dis 84:449–453

    Article  Google Scholar 

  • Wang C, Ulloa M, Roberts P (2006a) Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton. Theor Appl Genet 112:770–777

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Song X, Han Z, Guo W, Yu JZ, Sun J, Pan J, Kohel RJ, Zhang T (2006b) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of statistics, North Carolina State University, Raleigh (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79:1291–1310

    Article  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol 4:298–313

    Article  PubMed  CAS  Google Scholar 

  • Wheeler TA, Gannaway JR (2007) Identification of germplasm resistant to Thielaviopsis basicola in the USDA cotton germplasm collection. In: World cotton conference-4, 10–14 September 2007. Lubbock (in press)

  • Wheeler TA, Gannaway JR, Keating K (1999) Identification of resistance to Thielaviopsis basicola in diploid cotton. Plant Dis 83:831–833

    Article  Google Scholar 

  • Wheeler TA, Hake KD, Dever JK (2000) Survey of Meloidogyne incognita and Thielaviopsis basicola: Their impact on cotton fruiting and producers’ management choices in infested fields. J Nematol 32:576–583

    CAS  PubMed  Google Scholar 

  • Wright RJ, Thaxton P, Paterson AH, El-Zik K (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149:1987–1996

    PubMed  CAS  Google Scholar 

  • Zhang YM, Xu S (2004) Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny. Genetics 166:1981–1993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hirut Kebede for her valuable assistance and suggestions, and Cotton Incorporated (Project 04-531) and the Texas State Support Committee (Project 04-518TX) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Wright.

Additional information

Communicated by A. Paterson.

Chen Niu, Harriet E. Lister, and Bay Nguyen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, C., Lister, H.E., Nguyen, B. et al. Resistance to Thielaviopsis basicola in the cultivated A genome cotton. Theor Appl Genet 117, 1313–1323 (2008). https://doi.org/10.1007/s00122-008-0865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0865-5

Keywords

Navigation