Skip to main content
Log in

High resolution melting analysis of almond SNPs derived from ESTs

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

High resolution melting curve (HRM) is a recent advance for the detection of SNPs. The technique measures temperature induced strand separation of short PCR amplicons, and is able to detect variation as small as one base difference between samples. It has been applied to the analysis and scan of mutations in the genes causing human diseases. In plant species, the use of this approach is limited. We applied HRM analysis to almond SNP discovery and genotyping based on the predicted SNP information derived from the almond and peach EST database. Putative SNPs were screened from almond and peach EST contigs by HRM analysis against 25 almond cultivars. All 4 classes of SNPs, INDELs and microsatellites were discriminated, and the HRM profiles of 17 amplicons were established. The PCR amplicons containing single, double and multiple SNPs produced distinctive HRM profiles. Additionally, different genotypes of INDEL and microsatellite variations were also characterised by HRM analysis. By sequencing the PCR products, 100 SNPs were validated/revealed in the HRM amplicons and their flanking regions. The results showed that the average frequency of SNPs was 1:114 bp in the genic regions, and transition to transversion ratio was 1.16:1. Rare allele frequencies of the SNPs varied from 0.02 to 0.5, and the polymorphic information contents of the SNPs were from 0.04 to 0.53 at an average of 0.31. HRM has been demonstrated to be a fast, low cost, and efficient approach for SNP discovery and genotyping, in particular, for species without much genomic information such as almond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie N, Rikkerink E, Gardiner S, Nihal De Silva H (eds) Association mapping in plants. Springer, New York, pp 95–102

    Chapter  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  PubMed  CAS  Google Scholar 

  • Bennett CD, Campbell MN, Cook CJ, Eyre DJ, Nay LM, Nielsen DR, Rasmussen RP, Bernard PS (2003) The LightTyper™: high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 34:1288–1295

    PubMed  CAS  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet—a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bowcock AM, Ruizlinares A, Tomfohrde J, Minch E, Kidd JR, Cavallisforza LL (1994) High-resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • CorbettResearch (2006) High resolution melt assay design and analysis CorProtocol™. Corbett Research, Sydney

  • Fang J, Devanand PS, Chao CT (2005) Practical strategy for identification of single nucleotide polymorphisms in fruiting mei (Prunus mume Sieb. et Zucc.) from amplified fragment length polymorphism fragments. Plant Mol Biol Rep 23:227–239

    Article  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package) version 3.6a2. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Flot JF (2007) Champuru 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7:974–977

    Article  CAS  Google Scholar 

  • Flot JF, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6:627–630

    Article  CAS  Google Scholar 

  • Griffiths AJF, Wessler SR, Lewontin RC, Carroll SB (2008) Introduction to genetic analysis, 9th edn. W.H. Freeman and Co., New York

    Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220

    Article  PubMed  CAS  Google Scholar 

  • Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding KV (2006a) Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 52:494–503

    Article  PubMed  CAS  Google Scholar 

  • Herrmann MG, Durtschi JD, Voelkerding KV, Wittwer CT (2006b) Instrument comparison for DNA genotyping by amplicon melting. J Assoc Lab Automat 11:273–277

    Article  CAS  Google Scholar 

  • Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53:1544–1548

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka M, Narahara K, Kishikawa Y, Hamdy SI, Endo N, Agatsuma Y, Matsuura M, Inoue T, Tomioka Y, Mizugaki M (2002) A simultaneous LightCycler detection assay for five genetic polymorphisms influencing drug sensitivity. Clin Biochem 35:35–40

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Hurlebaus J, Weilke C (2007) High-resolution melting curve analysis on the LightCycler (R) 480 PCR system. Nat Methods Suppl S:AN17–AN18

    Google Scholar 

  • Hung C-C, Lee C-N, Chang C-H, Jong Y-J, Chen C-P, Hsieh W-S, Su Y-N, Lin W-L (2008) Genotyping of the G1138A mutation of the FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Clin Biochem 41:162–166

    Article  PubMed  CAS  Google Scholar 

  • Keller I, Bensasson D, Nichols RA (2007) Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes. PLoS Genet 3:185–191

    Article  CAS  Google Scholar 

  • Kennerson L, Warburton T, Nelis E, Brewer M, Polly P, De Jonghe P, Timmerman V, Nicholson GA (2007) Mutation scanning the GJB1 gene with high-resolution melting analysis: implications for mutation scanning of genes for Charcot-Marie-Tooth disease. Clin Chem 53:349–352

    Article  PubMed  CAS  Google Scholar 

  • Krypuy M, Ahmed A, Etemadmoghadam D, Hyland S, Australian Ovarian Cancer Study Group, deFazio A, Fox S, Brenton J, Bowtell D, Dobrovic A (2007) High resolution melting for mutation scanning of TP53 exons 5–8. BMC Cancer 7:168

    Article  PubMed  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Stella A, Milanesi L, Pozzi C (2005) ESTree db: a tool for peach functional genomics. BMC Bioinformatics 6(Suppl 4):S16

    Article  PubMed  Google Scholar 

  • Lazzari B, Caprera A, Vecchietti A, Merelli I, Barale F, Milanesi L, Stella A, Pozzi C (2008) Version VI of the ESTree db: an improved tool for peach transcriptome analysis. BMC Bioinformatics 9(Suppl 2):S9

    Article  PubMed  Google Scholar 

  • Lehmensiek A, Sutherland MW, McNamara RB (2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet

  • Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Lipsky RH, Mazzanti CM, Rudolph JG, Xu K, Vyas G, Bozak D, Radel MQ, Goldman D (2001) DNA melting analysis for detection of single nucleotide polymorphisms. Clin Chem 47:635–644

    PubMed  CAS  Google Scholar 

  • Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8

    Article  PubMed  Google Scholar 

  • Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581

    Article  PubMed  CAS  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Mekuria GT, Collins GG, Sedgley M (1999) Genetic variability between different accessions of some common commercial olive cultivars. J Hortic Sci Biotechnol 74:309–314

    Google Scholar 

  • Michel F, Lazowska J, Faye G, Fukuhara H, Slonimski PP (1974) Physical and genetic organization of petite and grande yeast mitochondrial DNA: III. high resolution melting and reassociation studies. J Mol Biol 85:411–431

    Article  CAS  Google Scholar 

  • Minch E, Ruiz-Linares A, Goldstein DB, Feldman MW, Cavalli-Sforza LL (1998) Microsat2: a computer program for calculating various statistics on microsatellite allele data. Department of Genetics. Stanford University, Stanford

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y (2001) A high-throughput SNP typing system for genome-wide association studies. J Hum Genet 46:471–477

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Werge T (2007) A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene: dissociation analysis of amplified fragments of DNA. Mol Cell Probes 21:8–11

    Article  PubMed  CAS  Google Scholar 

  • Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608

    Article  PubMed  CAS  Google Scholar 

  • Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245:154–160

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MS, Subramanian S, Kumar S (2003) Patterns of transitional mutation biases within and among mammalian genomes. Mol Biol Evol 20:988–993

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Salisbury BA, Pungliya M, Choi JY, Jiang R, Sun XJ, Stephens JC (2003) SNP and haplotype variation in the human genome. Mutat Res 526:53–61

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW, Cold Spring Harbor Laboratory (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor hermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Article  PubMed  Google Scholar 

  • Shen JC, Rideout WM 3rd, Jones PA (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 22:972–976

    Article  PubMed  CAS  Google Scholar 

  • Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    Article  PubMed  CAS  Google Scholar 

  • Steinert M, Van Assel S (1974) Base composition heterogeneity in kinetoplast DNA from four species of hemoflagellates. Biochem Biophys Res Commun 61:1249–1255

    Article  PubMed  CAS  Google Scholar 

  • Stephens AJ, Inman-Bamber J, Giffard PM, Huygens F (2008) High-resolution melting analysis of the spa repeat region of Staphylococcus aureus. Clin Chem 54:432–436

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • The-International-HapMap-Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  • Toyota T, Watanabe A, Shibuya H, Nankai M, Hattori E, Yamada K, Kurumaji A, Karkera JD, Detera-Wadleigh SD, Yoshikawa T (2000) Association study on the DUSP6 gene, an affective disorder candidate gene on 12q23, performed by using fluorescence resonance energy transfer-based melting curve analysis on the LightCycler. Mol Psychiatry 5:489–494

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi Z, Dracopoli N (2002) Progress in high throughput SNP genotyping methods. Pharmacogenomics J 2:103–110

    Article  PubMed  CAS  Google Scholar 

  • van Tienderen PH, de Haan AA, van der Linden CG, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582

    Article  Google Scholar 

  • Wakeley J (1994) Substitution-rate variation among sites and the estimation of transition bias. Mol Biol Evol 11:436–442

    PubMed  CAS  Google Scholar 

  • White HE, Hall VJ, Cross NCP (2007) Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes. Clin Chem 53:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Willmore-Payne C, Holden JA, Tripp S, Layfield LJ (2005) Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol 36:486–493

    Article  PubMed  CAS  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  PubMed  CAS  Google Scholar 

  • Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35:e41

    Article  PubMed  Google Scholar 

  • Woolley FM, Collins GG, Sedgley M (2000) Application of DNA fingerprinting for the classification of selected almond [Prunus dulcis (Miller) D. A. Webb] cultivars. Aust J Exp Agric 40:995–1001

    Article  CAS  Google Scholar 

  • Xie H, Sui Y, Chang F-Q, Xu Y, Ma R-C (2006) SSR allelic variation in almond (Prunus dulcis Mill.). Theor Appl Genet 112:366–372

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Vandersteen J, Wang L, Fuller T, Taylor M, Palais B, Wittwer CT (2004) High-resolution DNA melting curve analysis to establish HLA genotypic identity. Tissue Antigens 64:156–164

    Article  PubMed  CAS  Google Scholar 

  • Zhou LM, Wang L, Palais R, Pryor R, Wittwer CT (2005) High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem 51:1770–1777

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Yizhou Chen for his helpful discussions and suggestions on HRM analysis. This research was funded by Australian Research Council Grant No. DP0556459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Biao Wu.

Additional information

Communicated by P. Langridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SB., Wirthensohn, M.G., Hunt, P. et al. High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118, 1–14 (2008). https://doi.org/10.1007/s00122-008-0870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0870-8

Keywords

Navigation