Skip to main content
Log in

A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We characterized three lesion mimic necS1 (necrotic Steptoe) mutants, induced by fast neutron (FN) treatment of barley cultivar Steptoe. The three mutants are recessive and allelic. When infected with Puccinia graminis f. sp. tritici pathotypes MCC and QCC and P. graminis f. sp. secalis isolate 92-MN-90, all three mutants exhibited enhanced resistance compared to parent cultivar Steptoe. These results suggested that the lesion mimic mutants carry broad-spectrum resistance to stem rust. In order to identify the mutated gene responsible for the phenotype, transcript-based cloning was used. Two genes, represented by three Barley1 probesets (Contig4211_at and Contig4212_s_at, representing the same gene, and Contig10850_s_at), were deleted in all three mutants. Genetic analysis suggested that the lesion mimic phenotype was due to a mutation in one or both of these genes, named NecS1. Consistent with the increased disease resistance, all three mutants constitutively accumulated elevated transcript levels of pathogenesis-related (PR) genes. Barley stripe mosaic virus (BSMV) has been developed as a virus-induced gene-silencing (VIGS) vector for monocots. We utilized BSMV-VIGS to demonstrate that silencing of the gene represented by Contig4211_at, but not Contig10850_s_at caused the necrotic lesion mimic phenotype on barley seedling leaves. Therefore, Contig4211_at is a strong candidate for the NecS1 gene, which encodes a cation/proton exchanging protein (HvCAX1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive response in tobacco. Plant Physiol 92:215–221

    Article  PubMed  CAS  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77:73–81

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The crp5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  PubMed  CAS  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Drader T, Cavileer T, Bennypaul H, Gill K, Steffenson B, Kleinhofs A (2007) The barley stem rust resistance gene Rpg5 encodes the NBS-LRR and protein kinase domains in a single gene. Keystone symposia abstract, Plant Cell Biology, Coeur d’Alene, ID, p 109

  • Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol Plant Microbe Interact 20:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion hemeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Wanamaker S, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RKJ, Bent AF (2000) The Arabidopsis dnd1 “defense no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL (1994) Arabidopsis mutants simulate disease resistance response. Cell 77:565–577

    Article  PubMed  CAS  Google Scholar 

  • Evans DE, Williams LE (1998) P-type calcium ATPases in higher plants- biochemical, molecular and functional properties. Biochim Biophys Acta 1376:1–25

    PubMed  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Gray J, Close PS, Briggs SP, Johal GS (1997) A novel suppressor of cell death in plants by the Lls1 gene of maize. Cell 89:25–31

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–564

    Article  PubMed  CAS  Google Scholar 

  • Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786

    Article  PubMed  CAS  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive Arabidopsis copine mutant exhibits prcocious cell death and increased disease resistance. Plant Cell 13:2225–2240

    Article  PubMed  CAS  Google Scholar 

  • Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: Mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 12:508–514

    Article  CAS  Google Scholar 

  • Johal GS, Hulbert S, Briggs SP (1995) Disease lesion mimic mutations of maize: a model for cell death in plants. BioEssays 17:685–692

    Article  Google Scholar 

  • Jorgensen JH (1977) Spectrum of resistance conferred by ML-O powdery mildew resistance genes in barley. Euphytica 26:55–62

    Article  Google Scholar 

  • Kamiya T, Maeshima M (2004) Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations. J Biol Chem 279:812–819

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Akahori T, Maeshima M (2005) Expression profile of the genes for rice cation/H+ exchanger family and functional analysis in yeast. Plant Cell Physiol 46:1735–1740

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Graner A (2002) An integrated map of the barley genome. In: Vasil I, Phillips RL (ed) DNA-Based Markers in Plants. Kluwer, Boston, pp 187–199

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Knight MR, Sampbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Huckelhoven R, Beckhove U, Nagarajan S, Kogel KH (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (Telemorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133

    Article  PubMed  CAS  Google Scholar 

  • Li X, Song Y, Century K, Straight S, Ronald PC, Dong X, Lassner M, Zhang Y (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242

    Article  PubMed  CAS  Google Scholar 

  • Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Maeshima M (2001) Tonoplast Transporters: Organization and Function. Ann Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi KD, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Lambert JW (1955) Variability and inheritance of reaction of barley to race 15B of stem rust. Agron J 47:373–377

    Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1923) A simple formula giving the number of individuals required for obtaining one of a given frequency. Am Nat 57:66–73

    Article  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BFIII, Dangl JL (2003) Recognition and response in the plant immune system. Ann Rev Genet 37:579–609

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 33:389–392

    Article  PubMed  CAS  Google Scholar 

  • Pooviah BW, Reddy AS (1993) Calcium and signal transduction in plants. CRC Crit Rev Plant Sci 12:185–211

    Article  Google Scholar 

  • Rostoks N, Schmierer D, Kudrna D, Kleinhofs A (2003) Barley putative hypersensitive induced reaction gene: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theor Appl Genet 107:1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Gen Genomics 275:159–168

    Article  CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  PubMed  CAS  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  PubMed  CAS  Google Scholar 

  • Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825

    Article  PubMed  CAS  Google Scholar 

  • Silva H, Yoshioka K, Dooner HK, Klessig DF (1999) Characterization of a new Arabidopsis mutant exhibiting enhanced disease resistance. Mol Plant Microbe Interact 12:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis f. sp. tritici. USDA/Agricultural Research Service Publication No. E617 (Revised 1962) pp 53

  • Sun Y, Steffenson BJ (2005) Reaction of barley seedlings with different stem rust resistance genes to Puccinia graminis f. sp. tritici and P. g. f. sp. secalis. Can J Plant Pathol 27:80–89

    Google Scholar 

  • Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J, Klessig DF (2001) Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J 26:447–459

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Fetch T, Nirmala J, Schmierer D, Brueggeman R, Steffenson B, Kleinhofs A (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl Genet 113:847–855

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Nirmala J, Drader T, Brueggeman R, Gill U, Gill K, Kleinhofs A (2007) Characterization and functional analysis of Rpr1 gene in barley. Keystone symposia abstract, Plant Cell Biology, Coeur d’Alene, ID, p 321

Download references

Acknowledgments

This is Scientific Paper No. 0801-07 from the College of Agricultural, Human, and Natural Sciences Research Center, Washington State University, Pullman, WA 99164, Project 0196. Research was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service grant number #2004-35301-14635 and by the U.S. Barley Genome Project. We thank Derek Pouchnik, Stephanie Dahl and Tamas Szinyei for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andris Kleinhofs.

Additional information

Communicated by R. Waugh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (DOC 33 kb)

MOESM2 (XLS 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Lavery, L., Gill, U. et al. A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. Theor Appl Genet 118, 385–397 (2009). https://doi.org/10.1007/s00122-008-0910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0910-4

Keywords

Navigation