Skip to main content
Log in

Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon × Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0–34.4 and 28.9–31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14–70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Gen 109:1017–1027

    Article  CAS  Google Scholar 

  • Anonymous (1983) OIV, Office Internationnal de la la Vigne et du Vin, Paris

  • Antcliff A (1980) Inheritance of sex in Vitis. Ann Amelior Plantes 30:113–122

    Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape/‘green revolution/’ mutation. Nature 416:847–850

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Vivier M, Matsumoto S, Dry I, Thomas MR (2001) A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol 45:541–553

    Article  PubMed  CAS  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari M-A, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838

    Article  PubMed  CAS  Google Scholar 

  • Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Cubas P, Martinez-Zapater JM (2002) VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol 130:68–77

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Chaib J, Martinez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine 59:2579–2596

    CAS  Google Scholar 

  • Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101

    Article  PubMed  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biology 8:38

    Article  PubMed  CAS  Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF, Steinkellner H, Sefc K, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340

    Article  PubMed  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Gen 106:912–922

    CAS  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Gen 101:301–308

    Article  CAS  Google Scholar 

  • Di Gaspero G, Cipriani G, Marrazo MT, Andreetta D, Prado Castro MJ, Peterlunger E, Testolin R (2005) Isolation of (AC)n-microsatellites in Vitis vinifera L and analysis of genetic background in grapevines under marker assisted selection. Mol Breeding 15:11–20

    Article  Google Scholar 

  • Di Gaspero G, Cipriani G, Adam-Blondon AF, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. Theor Appl Genet 114:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Gen 105:780–795

    Article  CAS  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Gen 113:369–382

    Article  CAS  Google Scholar 

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Gen 109:1178–1187

    Article  CAS  Google Scholar 

  • Eibach R, Zyprian EM, Welter LJ, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124

    CAS  Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Gen 111:658–664

    Article  CAS  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Gen 108:501–515

    Article  CAS  Google Scholar 

  • Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L and Vitis riparia Mchx. Theor Appl Gen 106:1213

    CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pé ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, Characterization. TF-IPCfGG (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Lafon R, Clerjeau M (1988) Downy mildew. In: Pearson HM, Goheen AC (eds) Compendium of grape diseases. APS Press, St Paul Minn, pp 11–13

    Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959

    Article  CAS  Google Scholar 

  • Levadoux L (1946) Etude de la fleur et de la sexualité chez la vigne. Ann Ec natl Agric de Montpellier 27:1–89

    Google Scholar 

  • Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794

    Article  PubMed  CAS  Google Scholar 

  • Lowe KM, Walker MA (2006) Genetic linkage map of the interspecific grape rootstock cross Ramsey (Vitis champinii) × Riparia Gloire (Vitis riparia). Theor Appl Gen 112:1582–1592

    Article  CAS  Google Scholar 

  • Marino R, Sevini F, Madini A, Vecchione A, Pertot I, Dalla Serra A, Versini G, Velasco R, Grando MS (2003) QTL mapping for disease resistance and fruit quality in grape. In: Haldu E, Borbàs E (eds) VIII International Conference on Grape Genetics and Breeding ISHS 2003, Acta Hort 603, pp 527–533

  • May P (2004) Flowering and fruitset in grapevines. Lythrum Press, Adelaide, p 120

    Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366

    Article  CAS  Google Scholar 

  • Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131

    Article  PubMed  CAS  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of grapevine. Cambridge University press, Cambridge, p 252

    Google Scholar 

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence. Genomics 30:450–458

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS (1994) Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci USA 91:5761–5765

    Article  PubMed  CAS  Google Scholar 

  • Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite maker based framework linkage map of Vitis vinifera L. Theor Appl Gen 108:864–872

    Article  CAS  Google Scholar 

  • Riaz S, Krivanek AF, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theor Appl Gen 113:1317–1329

    Article  CAS  Google Scholar 

  • Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R (2008) A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Gen 116:1129–1143

    Article  CAS  Google Scholar 

  • Sefc K, Regner F, Turetschek E, Glössi J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    Article  PubMed  CAS  Google Scholar 

  • Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Gen 93:547–553

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Storey WB (1953) Genetics of the papaya. J Hered 44:70–78

    Google Scholar 

  • Tabachnick BG, Fidell LS (1996) Using multivariate statistics. Harper Collins, New York, p 1008

    Google Scholar 

  • Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Gen 86:985–990

    CAS  Google Scholar 

  • Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. Genetics 176:2637–2650

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen J, Boer M, Jansen R, Maliepaard C (2002) MapQTL® 4.0 Software for the calculation of QTL positions on genetic maps. Plant Res Int, Wageningen, p 44

    Google Scholar 

  • Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374

    Article  CAS  Google Scholar 

  • Xu K, Riaz S, Roncoroni N, Jin Y, Hu R, Zhou R, Walker M (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Gen 116:305–311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the excellent assistance of Louis Bordenave, Bernard Douens, Cyril Hévin, Jean-Pierre Petit and Jean-Paul Robert. Particular thanks to Amber Parker and Sarah Cookson for improvement of the English grammar and the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Decroocq.

Additional information

Communicated by J.-L. Jannink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marguerit, E., Boury, C., Manicki, A. et al. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118, 1261–1278 (2009). https://doi.org/10.1007/s00122-009-0979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0979-4

Keywords

Navigation