Skip to main content
Log in

A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We report herein the development of a pepper genetic linkage map which comprises 299 orthologous markers between the pepper and tomato genomes (including 263 conserved ortholog set II or COSII markers). The expected position of additional 288 COSII markers was inferred in the pepper map via pepper–tomato synteny, bringing the total orthologous markers in the pepper genome to 587. While pepper maps have been previously reported, this is the first complete map in the sense that all markers could be placed in 12 linkage groups corresponding to the 12 chromosomes. The map presented herein is relevant to the genomes of cultivated C. annuum and wild C. annuum (as well as related Capsicum species) which differ by a reciprocal chromosome translocation. This map is also unique in that it is largely based on COSII markers, which permits the inference of a detailed syntenic relationship between the pepper and tomato genomes—shedding new light on chromosome evolution in the Solanaceae. Since divergence from their last common ancestor is approximately 20 million years ago, the two genomes have become differentiated by a minimum number of 19 inversions and 6 chromosome translocations, as well as numerous putative single gene transpositions. Nevertheless, the two genomes share 35 conserved syntenic segments (CSSs) within which gene/marker order is well preserved. The high resolution COSII synteny map described herein provides a platform for cross-reference of genetic and genomic information (including the tomato genome sequence) between pepper and tomato and therefore will facilitate both applied and basic research in pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ben-Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2007) Patterns in grass genome evolution. Curr Opin Plant Biol 10:176–181

    Article  CAS  PubMed  Google Scholar 

  • Burnham CR (1962) “Discussions in cytogenetics”. Burgess, Minneapolis

    Google Scholar 

  • Caranta C, Lefebvre V, Palloix A (1997a) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant–Microbe Interact 10:872–878

    Article  CAS  Google Scholar 

  • Caranta C, Palloix A, Lefebvre V, Daubeze AM (1997b) QTLs for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host-cells. Theor Appl Genet 94:431–438

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frary A, Xu YM, Liu JP, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between l-esculentum and l-pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  PubMed  Google Scholar 

  • Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C chinese) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet 102:531–539

    Article  CAS  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  • Koompai P (1976) Some barriers to interspecific crossing and gene exchange in five species of Capsicum. M. Phil. Thesis. Reading University library

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lanteri S, Pickersgill B (1993) Chromosomal structural-changes in Capsicum annuum L. and C Chinense Jacq. Euphytica 67:155–160

    Article  Google Scholar 

  • Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619–627

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854

    Article  CAS  PubMed  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:157–169

    Article  CAS  Google Scholar 

  • Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    Article  CAS  PubMed  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  CAS  PubMed  Google Scholar 

  • Paran I, van der Voort JR, Lefebvre V, Jahn M, Landry L, van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004) An integrated genetic linkage map of pepper (Capsicum spp.). Mol Breed 13:251–261

    Article  CAS  Google Scholar 

  • Pickersgill B (1971) Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25:683–691

    PubMed  Google Scholar 

  • Pickersgill B, Heiser CB, McNeil J (1979) Numerical taxonomic studies on variatin and domestication in some species of Capsicum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 679–700

    Google Scholar 

  • Pochard E (1970) Description of trisomic individuals of Capsicum annuum L. obtained in progeny of a haploid plant. Ann Amel Plantes 20:233–256

    Google Scholar 

  • Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36:404–417

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Szinay D, Lang C, Ramanna MS, van der Vossen EAG, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C, Stiekema W, Visser RGF, de Jong H, Bai Y (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (1984) Linkage relationships and chromosomal locations of enzyme-coding genes in pepper, Capsicum annuum. Chromosoma 89:352–360

    Article  CAS  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, Devicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang XM, Cheng ZK, Mucller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FN, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Tanksley SD (2009) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet. doi:10.1007/s00122-008-0590-9

Download references

Acknowledgments

We highly appreciate the contribution to this project made by the following individuals and groups: Dr. Arnon Ben-Chaim and Dr. Edmund Quirin developed the mapping population and took lead in SSR/RFLP mapping; DNA landmarks Inc. (Québec, Canada) kindly shared their SSR markers; Xiaomin Jia, Eloisa C. Tedeschi, Yaprak Kantoglu and Ingrid S. Phillips carried out COSII mapping; Dr. Christiane Gebhardt (MPI for Plant Breeding Research, Köln, Germany) kindly permitted us to cite an unpublished result; Dr. Silvana Grandillo (CNR-IGV, Institute of Plant Genetics, Portici, Italy) provided helpful discussion. We also thank Dr. Lukas Mueller (Boyce Thompson Institute for Plant Research, Ithaca, NY, USA) and his bioinformatics group for hosting the maps and the marker data in Solanaceae Genomics Network (http://www.sgn.cornell.edu). This work was supported in part by NSF Plant Genome Award DBI-0421634 (ST), US-BARD IS-3225-01C, BARD Postdoctoral Fellowship Award No. FI-327-2002, USDA IFAFS Plant Genome Award No. 2001-52100-11347, NSF Metabolic Biochemistry Award No. 0412056, NIH Training Grant GM 08500, and the gift support from Syngenta and Seminis (MJ & ST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Tanksley.

Additional information

Communicated by P. Heslop-Harrison.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Supplementary material 1 (CPP 5 kb). This material is unfortunately not in the Publisher's archive anymore.

Supplementary material 2 (PPT 1,579 kb)

Supplementary material 3 (XLS 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., Eannetta, N.T., Xu, Y. et al. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118, 1279–1293 (2009). https://doi.org/10.1007/s00122-009-0980-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0980-y

Keywords

Navigation