Skip to main content
Log in

Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The yellow pigment (YP) of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. Phytoene synthase (Psy) is considered a rate-limiting enzyme in the carotenoid biosynthetic pathway and in this study, three alleles of Psy1-A1 were sequenced from four durum wheat cultivars and a co-dominant marker was developed for genetic mapping. Psy1-A1 mapped to chromosome 7AL near Xwmc809 in three durum mapping populations and was significantly associated with a pigment quantitative trait loci (QTL) identified on that chromosome. A second QTL localized 25 cM proximal to Psy1-A1 in two populations, and the interaction between the two QTL was not significant. Consistent with QTL mapping data, the Psy1-A1o allele was associated with elevated pigment in a validation population comprising 93 diverse cultivars and breeding lines. These results confirm an earlier hypothesis that Psy1, and at least one additional gene in the distal region of 7AL, are associated with grain YP differences in durum wheat. The functional co-dominant marker developed in this study differentiates the Psy1-A1 alleles reported here and could be used as a target to enhance YP selection in durum wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Association for Cereal Chemistry (2000) Approved methods of the AACC-method, 10th edn. St. Paul, Minnesota, pp 14–50

    Google Scholar 

  • Atienza SG, Ballesteros J, Martín A, Hornero-Méndez D (2007) Genetic variability of carotenoid concentration and degree of esterification among Tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. Agric Food Chem 55:4244–4251

    Article  CAS  Google Scholar 

  • Borrelli GM, Troccolo A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta colour. Cereal Chem 76:335–340

    Article  CAS  Google Scholar 

  • Burkhardt PK, Beyer P, Wunn J, Kloti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Somma S, Chantret N, Dubcovsky J, Blanco A (2004) PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome 47:911–917

    Article  PubMed  CAS  Google Scholar 

  • Cervigni G, Zhang W, Picca A, Carrera A, Helguera M, Manthey F, Miranda R, Dubcovsky J, Echenique V (2005) QTL mapping for LOX Activity and quality traits in durum wheat. In: Proceedings of the 7th international wheat conference. SAGPyA/INTA. Mar del Plata, Argentina, 27 November–2 December

  • Clarke JM, McCaig TN, DePauw RM, Knox RE, Clarke FR, Fernandez MR, Ames NP (2005a) Strongfield durum wheat. Can J Plant Sci 85:651–654

    Google Scholar 

  • Clarke JM, McCaig TN, DePauw RM, Knox RE, Ames NP, Clarke FR, Fernandez MR, Marchylo BA, Dexter JE (2005b) Commander durum wheat. Can J Plant Sci 85:901–904

    Google Scholar 

  • Clarke FR, Clarke JM, McCaig TN, Knox RE, DePauw RM (2006) Inheritance of yellow pigment in concentration in four durum wheat crosses. Can J Plant Sci 86:133–141

    Google Scholar 

  • Corona V, Aracri B, Kosturkova G, Bartley GE, Pitto L, Giorgette L, Scolnik PA, Giuliano G (1996) Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9:505–512

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FX Jr, Pogson B, Sun ZR, McDonald KA, Della Penna D, Gantt E (1996) Functional analysis of the β and lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626

    Article  PubMed  CAS  Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135:255–261

    Article  PubMed  CAS  Google Scholar 

  • Gallagher CE, Matthews PD, Li F, Wurtzel ET (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol 135:1776–1783

    Article  PubMed  CAS  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of Phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    Article  PubMed  CAS  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  PubMed  CAS  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci 42:1695–1700

    Article  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Johnston RA, Quick JS, Hammond JJ (1983) Inheritance of semolina color in six durum wheat crosses. Crop Sci 23:607–610

    Google Scholar 

  • Knapp SJ (2001) Mapping quantitative trait loci. In: Phillips RI, Vasil IK (eds) DNA-based markers in plants. Kluwer, Netherlands, pp 59–99

    Google Scholar 

  • Knox RE, Clarke JM, DePauw RM (2000) Dicamba and growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breed 119:289–298

    Article  Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I (2006) Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of Rubisco. Plant Physiol 140:466–483

    Article  PubMed  CAS  Google Scholar 

  • Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Lindgren LO, Stalberg KG, Hoglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779–785

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute Inc., Cary

    Google Scholar 

  • Lynch M, Walsh JB (1998) Genetics and analysis of quantitative traits. Sinauer Assocs., Inc., Sunderland

    Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Matsuo RR, Dexter JE (1980) Relationship between some durum wheat physical characteristics and semolina milling properties. Can J Plant Sci 60:49–53

    Google Scholar 

  • McCaig TN, McLeod JG, Clarke JM, DePauw RM (1992) Measurement of durum pigment with an NIR instrument operating in the visible range. Cereal Chem 69:671–672

    CAS  Google Scholar 

  • Panfili G, Fratianni A, Irano M (2004) Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem 52:6373–6377

    Article  PubMed  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour color in wheat. Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Sourdille P, Rao VS (2008) Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp durum). Mol Breed 21:485–496

    Article  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Reimer SO, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008) Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51:1016–1025

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotech 18:233–234

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Wenguang C (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593

    Article  PubMed  CAS  Google Scholar 

  • Troccoli A, Borrelli GM, De Vita P, Fares C, Di Fonzo N (2000) Durum wheat quality: a multidisciplinary concept. J. Cereal Sci 32:99–113

    Article  Google Scholar 

  • van Ooijen JW, Voorips RE (2004) JoinMap Version 3.0, Software for the calculation of genetic linkage maps. Kyazma BV, Wageningen

    Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Pozniak.

Additional information

Communicated by D. Mather.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Reimer, S., Pozniak, C.J. et al. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118, 1539–1548 (2009). https://doi.org/10.1007/s00122-009-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1001-x

Keywords

Navigation