Skip to main content
Log in

Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Four successive reciprocal backcrosses between F1 (obtained from wild Brassica juncea as maternal plants and transgenic glyphosate- or glufosinate-tolerant oilseed rape, B. napus, as paternal plants) or subsequent herbicide-tolerant backcross progenies and wild B. juncea were achieved by hand pollination to assess potential transgene flow. The third and forth reciprocal backcrosses produced a number of seeds per silique similar to that of self-pollinated wild B. juncea, except in plants with glufosinate-tolerant backcross progeny used as maternal plants and wild B. juncea as paternal plants, which produced fewer seeds per silique than did self-pollinated wild B. juncea. Germination percentages of reciprocal backcross progenies were high and equivalent to those of wild B. juncea. The herbicide-tolerant first reciprocal backcross progenies produced fewer siliques per plant than did wild B. juncea, but the herbicide-tolerant second or third reciprocal backcross progenies did not differ from the wild B. juncea in siliques per plant. The herbicide-tolerant second and third reciprocal backcross progenies produced an amount of seeds per silique similar to that of wild B. juncea except for with the glufosinate-tolerant first and second backcross progeny used as maternal plants and wild B. juncea as paternal plants. In the presence of herbicide selection pressure, inheritance of the glyphosate-tolerant transgene was stable across the second and third backcross generation, whereas the glufosinate-tolerant transgene was maintained, despite a lack of stabilized introgression. The occurrence of fertile, transgenic weed-like plants after only three crosses (F1, first backcross, second backcross) suggests a potential rapid spread of transgenes from oilseed rape into its wild relative wild B. juncea. Transgene flow from glyphosate-tolerant oilseed rape might be easier than that from glufosinate-tolerant oilseed rape to wild B. juncea. The original insertion site of the transgene could affect introgression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahloowalia BS (1971) Frequency, origin, and survival of aneuploids in tetraploid ryegrass. Genetica 42:129–138

    Article  Google Scholar 

  • Al Mouemar A, Darmency H (2004) Lack of stable inheritance of introgressed transgene from oilseed rape in wild radish. Environ Biosaf Res 3:209–214

    Article  Google Scholar 

  • Ammitzbøll H, Mikkelsen TN, Jørgensen RB (2005) Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa. Environ Biosaf Res 4:3–12

    Article  CAS  Google Scholar 

  • Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A, Saji H (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosaf Res 5:77–87

    Article  CAS  Google Scholar 

  • Benabdelmouna A, Guèritaine G, Abirached-Darmency M, Darmency H (2003) Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Genome 46:469–472

    Article  PubMed  CAS  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1991) Potential of gene transfer among oilseed Brassica and their weedy relatives. In: Proceedings of GCIRC 8th international rapeseed congress, Saskatoon, Canada, pp 1022–1027

  • Bing DJ, Downey RK, Rakow GFW (1996) Hybridization among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed 115:470–473

    Article  Google Scholar 

  • Campbell LG, Snow AA (2007) Competition alters life history and increase the relative fecundity of crop-wild radish hybrids (Raphanus spp.). New Phytol 173:648–660

    Article  PubMed  Google Scholar 

  • Campbell DR, Waser NM (2001) Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution 55:669–676

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytol 170:429–443

    Article  PubMed  CAS  Google Scholar 

  • Chen LH, Wang XW, Zhang WJ, Zhang XD, Hu DF, Liu GT (1999) Transformation of common wheat (Triticum aestivum L.) with herbicide-resistant EPSPs gene. Acta Genet Sin 26:239–243

    PubMed  CAS  Google Scholar 

  • Chèvre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389:924

    Article  Google Scholar 

  • Chèvre AM, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M (1998) Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theor Appl Genet 97:90–98

    Article  Google Scholar 

  • Chèvre AM, Adamczyk K, Eber F, Huteau V, Coriton O, Letanneur JC, Laredo C, Jenczewski E, Monod H (2007) Modelling gene flow between oilseed rape and wild radish. I. Evolution of chromosome structure. Theor Appl Genet 114:209–221

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ (1992) Spread of engineered genes to wild relatives. Plant Physiol 100:13–15

    Article  PubMed  CAS  Google Scholar 

  • Darmency H, Fleury A (2000) Mating system in Hirschfeldia incana and hybridization to oilseed rape. Weed Res 40:231–238

    Article  Google Scholar 

  • Agbios GM database (2008) AGBIOS Canadian Company. http://www.agbios.com/dbase.php. Accessed 22 Sept 2008

  • FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton AD, Cochrane M (2007) Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica 158:209–230

    Article  Google Scholar 

  • Frello SK, Hansen R, Jensen J, Jørgensen RB (1995) Inheritance of rapeseed (Brassica napus)-specific RAPD markers and a transgene in the cross B. juncea × (B. juncea × B. napus). Theor Appl Genet 91:236–241

    Article  Google Scholar 

  • Ge HX, Li ZY (2007) Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis. Chromosome Res 15:849–861

    Article  PubMed  CAS  Google Scholar 

  • Guan CY (1996) Comparative studies of inheritable character in Xinjiang wild rape and Sinapis arvensis L. Acta Agro Sin 22:214–219

    Google Scholar 

  • Guan CY (2005) Transgenic breeding of oilseed rape. Chin J Oil Crop Sci 27:97–103

    Google Scholar 

  • Guan CY, Li X (1997) Research and application of transgenic oilseed rape. J Cell Biol 19:18–23

    CAS  Google Scholar 

  • Guèritaine G, Sester M, Eber F, Chèvre AM, Darmency H (2002) Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Mol Ecol 11:1419–1426

    Article  PubMed  Google Scholar 

  • Guo QY, Tu HL, Qiu XL, Xin Y (1998) Research on occurrence pattern and control technology of wild mustard. Sci Tech Qinghai Agric For 4:38–41

    Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet Resour Crop Evol 48:621–627

    Article  Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283

    Article  PubMed  CAS  Google Scholar 

  • Hasterok R, Wolny E, Kulak S, Zdziechiewicz A, Maluszynska J, Heneen WK (2005) Molecular cytogenetic analysis of Brassica rapaBrassica oleracea var. alboglabra monosomic addition lines. Theor Appl Genet 111:196–205

    Article  PubMed  CAS  Google Scholar 

  • Hauser TP, Jørgensen RB, Ø stergard H (1998) Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81:436–443

    Article  Google Scholar 

  • Hauser TP, Damgaard C, Jørgensen RB (2003) Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae). Am J Bot 90:571–578

    Article  Google Scholar 

  • Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and n = 9 diploid species. Genome 33(1):131–142

    CAS  Google Scholar 

  • Huangfu CH, Song XL, Sheng Qiang, Zhang HJ (2007) Response of wild Brassica juncea populations to glyphosate. Pest Manage Sci 63:1133–1140

    Article  CAS  Google Scholar 

  • Jenczewski E, Ronfort J, Chèvre AM (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ Biosaf Res 2:9–24

    Article  Google Scholar 

  • Jørgensen RB, Anderson B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81:1620–1626

    Article  Google Scholar 

  • Jørgensen RB, Anderson B, Landbo L, Mikkelsen TR (1996) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy relatives. Acta Hortic 407:193–200

    Google Scholar 

  • Jørgensen RB, Andersen B, Hauser TP, Lanbo L, Mikkelsen TR, Østergård H (1998) Introgression of crop genes from oilseed rape (Brassica napus) to related wild species—an avenue for the escape of engineered genes. Acta Hortic 459:211–217

    Google Scholar 

  • Kawata M, Murakami K, Ishikawa T (2009) Dispersal and persistence of genetically modified oilseed rape around Japanese harbors. Environ Sci Pollut Res 16(2):120–126

    Article  CAS  Google Scholar 

  • Kerlan MC, Chèver AM, Eber F, Renard M (1992) Risk assessment of outcrossing of transgenic rapeseed related species: interspecific hybrid production under optimal condition with emphasis on pollination and fertilization. Euphytica 62:145–153

    Article  Google Scholar 

  • Kerlan MC, Chèver AM, Eber F (1993) Interspecific hybrids between a transgenic rapeseed (Brassica napus) and related species: cytogenetical characterization and detection of the transgene. Genome 36:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Kling J (1996) Could transgenic super crops one day breed super weeds? Science 274:180–181

    Article  CAS  Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Canton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chèvre AM (2006) Pairing and recombination at meiosis of Brasscia rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Lefol E, Sèguin-Swartz G, Downey RK (1997) Sexual hybridisation in crosses of cultivated Brassica species with the crucifers Erucatrum gallicum and Raphanus raphanistrum: potential for gene introgression. Euphytica 95:127–139

    Article  Google Scholar 

  • Lègère A (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L.) as a case study. Pest Manage Sci 61:292–300

    Article  CAS  Google Scholar 

  • Lu CM, Xiao L, Wu YH (2005) Ecological risk assessment of transgenic rapeseed in China. J Agric Biotechnol 13:267–275

    CAS  Google Scholar 

  • Mercer KL, Andow DA, Wyse DL, Shaw RG (2007) Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecol Lett 10:383–393

    Article  PubMed  Google Scholar 

  • Metz PLJ, Nap JP, Stiekema WJ (1995) Hybridization of radish (Raphanus sativus L.) and oilseed rape (Brassica napus L.) through a flower-culture method. Euphytica 83:159–168

    Article  CAS  Google Scholar 

  • Metz PLJ, Jacobsen E, Nap JP, Pereira A, Stiekema WJ (1997) The impact on biosafety of the phosphinothricin-tolerant transgene in inter-specific B. rapa × B. napus hybrids and their successive backcrosses. Theor Appl Genet 95:442–450

    Article  CAS  Google Scholar 

  • Neve P (2007) Challenges for herbicide resistance evolution and management: 50 years after Harper. Weed Res 47:365–369

    Article  Google Scholar 

  • Pan LW, Chen JH, Shen YF, Hu YQ, Tao J, Han W (2001) Detection comparison of CP4 EPSP gene from genetically modified roundup ready rape seed and soybean. Lett Biotechnol 12:175–207

    Google Scholar 

  • Pu HM (2003) Transgenetic herbicide-tolerant oilseed rape and its ecological security. Chin J Oil Crop Sci 25:89–92

    Google Scholar 

  • Pu HM, Gao JQ, Qi CK, Zhang JF, Chen XJ, Fu SZ (2003) Inheritance of herbicide resistance in Brassica napus and its utilization. Jiangsu J Agric Sci 19:81–86

    Google Scholar 

  • Pu HM, Qi CK, Zhang JF, Fu SZ, Gao JQ, Chen XJ, Zhao XX (2005) The studies on gene flow from GM herbicide-tolerant rapeseed to cruciferous weeds. Acta Ecol Sin 25:910–916

    CAS  Google Scholar 

  • Rieger MA, Potter TD, Preston C, Powles SB (2001) Hybridization between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor Appl Genet 103:555–560

    Article  CAS  Google Scholar 

  • Roy NN (1984) Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica 33:295–303

    Article  Google Scholar 

  • Scheffler, Dale (1994) Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic Res 3:263–278

    Article  CAS  Google Scholar 

  • Snow AA, Anderson B, Jørgensen RB (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol Ecol 8:605–615

    Article  Google Scholar 

  • Song XL, Qiang S (2003) Sexual compatibility of three species of oilseed rape(Brassica Spp.) with wild rapes (B. juncea var. gracilis Tsen et Lee) and the fitness of F1—potential for gene transfer. Chin J Appl Environ Biol 9:357–361

    Google Scholar 

  • Song XL, Huangpfu CH, Qiang S (2007) Gene flow from transgenic glufosinate- or glyphosate-tolerant oilseed rape to wild rape. J Plant Ecol 31:729–737

    CAS  Google Scholar 

  • Tomiuk J, Hauser Tp, Jørgensen RB (2000) A- or C-chromosomes, does it matter for the transfer of transgenes from Brassica napus. Theor Appl Genet 100:750–754

    Article  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft L (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  PubMed  CAS  Google Scholar 

  • Vacher C, Weis AE, Hermann D, Kossler T, Young C, Hochberg M (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theor Appl Genet 109:806–814

    Article  PubMed  Google Scholar 

  • Wang XF, Wang HZ, Liu GH, Hu ZL, Zhen YB (2005) Transgenic hybrid parents in Brassica napus transformed with bivalent genes for resistance to Sclerotinia sclerotiorum. Chin Bull Bot 22:292–301

    Google Scholar 

  • Warwich SI, Simard MJ, Lègère A, Beckie HJ, Braun L, Zhu B, Mason P, Sègain-swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Wild.) O. F. Schulz. Theor Appl Genet 107:528–539

    Article  CAS  Google Scholar 

  • Warwick SI, Legere A, Sinard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Whitney KD, Randell RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in weedy sunflower Helianthus annuus. Am Nat 167:794–807

    Article  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim H, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-level analysis of the diploidization process in the triplicated flowering locus C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura Y, Beckie HJ, Matsuo K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosaf Res 5:67–75

    Article  Google Scholar 

  • Zhu B, Lawrence JR, Warwick SI, Mason P, Braun L, Halfhill MD, Stewart CN (2004) Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer. Mol Ecol 13:237–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Basic Research and Development Program (2007CB109202) and the National Natural Science Foundation of China (30400059). We express our deep appreciation to Dr. Robert E. Blackshaw, Suzanne Warwick, Yong Woong Kwon and Tae Jin Yang for their valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Qiang.

Additional information

Communicated by A. Bervillé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Wang, Z., Zuo, J. et al. Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis . Theor Appl Genet 120, 1501–1510 (2010). https://doi.org/10.1007/s00122-010-1271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1271-3

Keywords

Navigation