Skip to main content
Log in

Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Molecular linkage maps are an important tool for gene discovery and cloning, crop improvement, further genetic studies, studies on diversity and evolutionary history, and cross-species comparisons. Linkage maps differ in both the type of marker and type of population used. In this study, gene-based markers were used for mapping in a recombinant inbred (RI) population of Phaseolus vulgaris L. P. vulgaris, common dry bean, is an important food source, economic product, and model organism for the legumes. Gene-based markers were developed that corresponded to genes controlling mutant phenotypes in Arabidopsis thaliana, genes undergoing selection during domestication in maize, and genes that function in a biochemical pathway in A. thaliana. Sequence information, including introns and 3′ UTR, was generated for over 550 genes in the two genotypes of P. vulgaris. Over 1,800 single nucleotide polymorphisms and indels were found, 300 of which were screened in the RI population. The resulting LOD 2.0 map is 1,545 cM in length and consists of 275 gene-based and previously mapped core markers. An additional 153 markers that mapped at LOD <1.0 were placed in genetic bins. By screening the parents of other mapping populations, it was determined that the markers were useful for other common Mesoamerican × Andean mapping populations. The location of the mapped genes relative to their homologs in Arabidopsis thaliana (At), Medicago truncatula (Mt), and Lotus japonicus (Lj) were determine by using a tblastx analysis with the current pseduochromosome builds for each of the species. While only short blocks of synteny were observed with At, large-scale macrosyntenic blocks were observed with Mt and Lj. By using Mt and Lj as bridging species, the syntenic relationship between the common bean and peanut was inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389

    Article  CAS  PubMed  Google Scholar 

  • American Dietetic Association (2004) Position of the American Dietetic Association and Dietitians of Canada. Nutrition intervention in the care of persons with the human immunodeficiency virus infection. J Am Diet Assoc 104:1425–1441

    Article  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejune-Henaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Becerra-Velasquez VL, Gepts P (1994) RFLP diversity of common bean (Phaseolus vulgaris) in its centres of origin. Genome 37:256–263

    Article  Google Scholar 

  • Bertioli DJ, Moretzsohn MC, Madsen LH, Leal-Bertioli SCM, Guimaraes PM, Hougaard BK, Fredslund J, Nielsen AM, Sato S, Tabata S, Cannon SB, Stougaard J (2009) An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10:45

    Article  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AM (2003) Unravelling angiosperm evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Brady L, Basset MJ, McClean PE (1998) Molecular markers associated with T and Z, two genes controlling partly colored seed coat patterns in common bean. Crop Sci 38:1073–1075

    Article  CAS  Google Scholar 

  • Buys H, Hendricks M, Eley B, Hussey G (2002) The role of nutrition and micronutrients in pediatric HIV infection. SADJ 57:454–456

    CAS  PubMed  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3:19

    Article  PubMed  Google Scholar 

  • Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  CAS  PubMed  Google Scholar 

  • Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon M-S, Hwang E-Y, Yi S-I, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA extraction procedure for small quantities of fresh leaf material. Phytochem Bulletin 19:11–15

    Google Scholar 

  • Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Phys 124:1483–1492

    Article  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. HortScience 33:1124–1130

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: Voysest O, Van Schoonhoven A (eds) Common beans: research for crop improvement. CAB Intern, Wallingford, Oxon

    Google Scholar 

  • Gillespie S, Kadiyala S (2005) HIV/AIDS and food nutrition and security: from evidence to action. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Grant D, Cregan P, Shoemaker RC (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci USA 97:4168–4173

    Article  CAS  PubMed  Google Scholar 

  • Hougaard BK, Madsen LH, Sandal N, de Carvalho Moretzsohn M, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula, and Arachis. Genetics 179:2299–2312

    Article  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Kaplan L, Lynch TF (1999) Phaseolus (Fabaceae) in archeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Econ Bot 53:261–272

    Google Scholar 

  • Kelly JD, Vallejos VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39:1196–1207

    CAS  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular-marker assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Kevei Z, Seres A, Kerest A, Kao P, Kiss P, Toth G, Endre G, Kiss GB (2005) Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Gen Genomics 274:644–657

    Article  CAS  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548

    Article  CAS  Google Scholar 

  • Komulainen P, Brown GR, Mikknoen M, Karhu A, Garcia-Gil MR, O’Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    Article  CAS  PubMed  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  • Kruzich LA, Marquis GS, Carriquiry AL, Wilson CM, Stephensen CB (2004) US youths in the early stages of HIV disease have low intakes of some micronutrients important for optimal immune function. J Am Diet Assoc 104:1095–1101

    Article  PubMed  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Livingstone K, Zou Y, Church A, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95

    Article  PubMed  Google Scholar 

  • McClean PE, Lee RK (2007) Genetic architecture of chalcone isomerase non-coding regions in common bean (Phaseolus vulgaris L.) Genome 50:203–214

  • McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    Article  CAS  PubMed  Google Scholar 

  • McClean PE, Lee RK, Miklas PM (2004) Sequence diversity analysis of dihydroflavonol 4-reductase intron 1 in common bean. Genome 47:266–280

    Article  CAS  PubMed  Google Scholar 

  • McClean PE, Lavin M, Gepts P, Jackson SA (2008) Phaseolus vulgaris L.: a diploid model for soybean. In: Stacey G (ed) Genomics of soybean. Springer Science + Business Media, LLC, New York, pp 55–76

    Chapter  Google Scholar 

  • Meinke DW, Meinke LK, Showalter TC, Schissel AM, Mueller LA, Tzafrir I (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol 131:409–418

    Article  CAS  PubMed  Google Scholar 

  • Miklas PN, Stone V, Daly MJ, Stavely JR, Steadman JR, Bassett MJ, Delorme R, Beaver JS (2000) Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population (‘Dorado’/XAN 176). J Am Soc HortSci 125:476–481

    CAS  Google Scholar 

  • Miklas PN, Johnson WC, Delorme R, Riley RH, Gepts P (2001) Inheritance and QTL analysis of physiological resistance to white mold in common bean G122. Crop Sci 41:309–315

    Article  Google Scholar 

  • Miklas PN, Delorme R, Riley RH (2003) Identification of QTL conditioning resistance to white mold in a snap bean population. J Am Soc HortSci 128:564–570

    CAS  Google Scholar 

  • Mudge J, Cannon SB, Kalo P, Oldroyd GED, Roe BA, Town CD, Young ND (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biol 5:15

    Article  PubMed  Google Scholar 

  • Murray JD, Michaels TE, Cardona C, Schaafsma AW, Pauls KP (2004) Quantitative trait loci for leafhopper (Empoascafabe and Empoascakraemeri) resistance and seed weight in common bean. Plant Breed 123:474–479

    Article  CAS  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  CAS  PubMed  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993a) Towards an integrated linkage map of common bean. 2. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  Google Scholar 

  • Nodari RO, Tsai SM, Guzman P, Gilbertson RL, Gepts P (1993b) Towards an integrated linkage map of common bean III: Mapping genetic factors controlling host–bacteria interactions. Genetics 134:341–350

    CAS  PubMed  Google Scholar 

  • Papa R, Acosta J, Delgado-Salinas A, Gepts P (2005) A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet 111:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Papa R, Bellucci E, Rossi M, Leonardi S, Rau D, Gepts P, Nanni L et al (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051

    Article  CAS  PubMed  Google Scholar 

  • Park SO, Coyne DP, Steadman JR, Skroch PW (2001) Mapping of QTL for resistance to white mold diseases in common bean. Crop Sci 41:1253–1262

    Article  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa-Harand A, Porch T, Gepts P (2008) Standard nomenclature or common bean chromosomes and linkage groups. Annu Rept Bean Improv Coop 51:106–107

    Google Scholar 

  • Piperno DR, Dilehay TD (2008) Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc Natl Acad Sci USA 105:19622–19627

    Google Scholar 

  • Ramirez M, Graham MA, Blanco-Lopez L, Silvente S, Medrano-Soto A, Blair MW, Hernandez G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227

    Article  CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  Google Scholar 

  • Román-Avilés B, Kelly JD (2005) Identification of QTL conditioning resistance to Fusarium root rot in Phaseolus vulgaris L. Crop Sci 45:1881–1890

    Article  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa P (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evol Appl (online) doi:10.1111/j.1752-4571.2009.00082.x

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • SAS Institute (1999) The SAS system for windows, version 9.13. SAS Institute, Cary

    Google Scholar 

  • Savarino A, Pescarmona GP, Boelaert JR (1999) Iron metabolism and HIV infection: reciprocal interactions with potentially harmful consequences? Cell Biochem Funct 17:279–287

    Article  CAS  PubMed  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542

    Article  CAS  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MC, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  CAS  PubMed  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • South Africa Department of Health (2001) South African national guidelines on nutrition for people living with TB, HIV/AIDS and other debilitating diseases. Ministry of Health, Pretoria, South Africa. http://www.sahealthinfo.org/nutrition/sanational.htm (accessed 1/26/2007)

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44:1046–1056

    Article  Google Scholar 

  • Tohme J, Orlando Gonzalez D, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    CAS  PubMed  Google Scholar 

  • Vigoroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99:9650–9655

    Article  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (1990) Genetic data analysis. Sinauer Publications, Sunderland

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M, Teanillon MI, Vroh Bi I, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMulled MD (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Phys 137:1174–1181

    Article  CAS  Google Scholar 

  • Yu ZH, Stall RE, Vallejos CE (1998) Detection of genes for resistance to common bacterial blight of beans. Crop Sci 38:1290–1296

    Article  CAS  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Kim D-J, Maek J-M, Choi H-K, Ellis LC, Kuester H, McCrombie MW, Pend H-M, Cook DR (2003a) Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol 131:1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003b) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    CAS  PubMed  Google Scholar 

  • Zhu H, Choi H-K, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the USDA Cooperative State Research, Education and Extension Service: National Research Initiative, Plant Genome Program. We would also like to thank Dr. Paul Gepts for supplying us with genotype information on the markers from the core BAT93 × Jalo EEP558 RI linkage map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip McClean.

Additional information

Communicated by C. Schön.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnell, M., Mamidi, S., Lee, R. et al. Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121, 1103–1116 (2010). https://doi.org/10.1007/s00122-010-1375-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1375-9

Keywords

Navigation