Skip to main content
Log in

QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Compared to maize and temperate grasses, sorghum has received less attention in terms of improving cell wall components. The objectives of this study were to identify quantitative trait loci (QTL) with main effects, epistatic and pleiotropic effects along with QTL × environment (QE) interactions controlling fibre-related traits in sorghum. Neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, fresh leaf mass, stripped stalk mass, dry stalk mass, fresh biomass and dry biomass were analysed from a population of 188 grain × sweet sorghum recombinant inbred lines. A genetic map consisting of 157 DNA markers was constructed, and QTL were detected using composite interval mapping (CIM). CIM detected more than 5 additive QTL per trait explaining 7.1–24.7% of the phenotypic variation. Abundant co-localization of these QTL was observed across all chromosomes, and the highest cluster was identified on chromosome 6. Searching for candidate genes using the confidence interval of our QTL clusters reveals that these clusters might comprise a set of genes that are tightly linked. Some QTL showed multiple effects; however, the allele for each trait was favouring the parent with the increasing effect. QE interactions were observed for QTL showing multiple effects. Additive × additive interaction was observed for 7 out of 10 traits, indicating the importance of epistatic analysis. However, the phenotypic variation explained by digenic interactions was lower compared to the individual QTL. Our results indicate that various genetic components contribute to fibre-related traits and should be considered during the enhancement of sorghum for lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Assar HA, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45:1636–1644

    Article  CAS  Google Scholar 

  • Barrierè Y, Gulliet C, Goffner D, Pichon M (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim Res 52:193–228

    Article  Google Scholar 

  • Barrierè Y, Thomas J, Denoue D (2008) QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 × F286. Plant Sci 175:585–595

    Article  Google Scholar 

  • Berg ES, Olaisen B (1994) Hybrid PCR sequencing–sequencing of PCR products using a universal primer. Biotechniques 17:896–901

    PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra A, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    PubMed  CAS  Google Scholar 

  • Blaschke L, Legrand M, Mai C, Polle A (2004) Lignification and structural biomass production in tobacco with suppressed caffeic/5-hydroxy ferulic acid-O-methyl transferase activity under ambient and elevated CO2 concentrations. Physiol Plant 121:75–83

    Article  PubMed  CAS  Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28:237–259

    Article  CAS  Google Scholar 

  • Cao GQ, Zhu J, He CX, Gao YM, Wu P (2001) QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (Oryza sativa L). Acta Genet Sin 28:135–143

    PubMed  CAS  Google Scholar 

  • Cardinal AJ, Lee M, Moore KJ (2003) Genetic mapping and analysis of quantitative trait loci affecting fibre and lignin content in maize. Theor Appl Genet 106:866–874

    PubMed  CAS  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420

    Article  PubMed  CAS  Google Scholar 

  • Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • Dean RE, Dahlberg JA, Hopkins MS, Mutchell SE, Kresovich S (1999) Genetic redundancy and diversity among ‘Orange’ accessions in the U.S. National sorghum collection assessed with simple sequence repeats (SSR) markers. Crop Sci 39:1215–1221

    Article  Google Scholar 

  • Dhugga KS (2007) Maize biomass yield and composition of biofuel. Crop Sci 47:2211–2227

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fehr WR (1987) Principles of cultivar development. MacMillan, New York

    Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome. Ann Bot 89:3–10

    Article  PubMed  CAS  Google Scholar 

  • Garcia AAF, Wang S, Melchinger AE, Zen Z-B (2008) QTL mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724. doi:10.1534/genetics.107.082867

    Google Scholar 

  • Grabber JH, Ralph J, Lapieree C, Barrierè Y (2004) Genetic and molecular basis of grass cell-wall degradability I Lignin-cell wall matrix interactions. CR Biol 327:455–465

    Article  CAS  Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  PubMed  CAS  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Pons-Kühnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Krakowsky MD, Lee M, Coors JG (2005) Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue. Theor Appl Genet 111:337–346

    Article  PubMed  CAS  Google Scholar 

  • Lamkey KR, Lee M (1993) Quantitative genetics, molecular markers, and plant improvement. In BC Imrie, JB Hacker (ed) Focused plant improvement: towards responsible and sustainable agriculture. Proceedings of 10th Australian plant breeding conference, Gold Coast, 18–23 April 1993, Australian convention Travel Service: Canberra, pp 104–115

  • Léon J, Becker HC (1988) Repeatability of some statistical measures of phenotypic stability—correlation between single year results and multi years results. Plant Breed 100:137–142

    Article  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 6:621–630

    Article  Google Scholar 

  • Li Z-K, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in Rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  • Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47

    Article  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-R, Schertz KF, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS® for mixed models, 2nd edn. SAS Institute, Cary

    Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26. doi:10.1186/1471-2164-9-26

  • Mace ES, Rami J-F, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DarT) markers. BMC Plant Biol 9:13. doi:101186/1471-2229-9-13

  • Moore KJ, Hatfield RD (1994) Carbohydrates and forage quality. In: Fahey GC et al (eds) Forage quality, evaluation, and utilization. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008) Genetic improvement of sorghum as biofuel feedstock II QTL for stem and leaf structural carbohydrates. Crop Sci 48:2181–2193

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Prioul J-L, Pelleschi S, Sene M, Thévenot C, Causse M, de Vienne D, Leonardi A (1999) From QTLs for enzyme activity to candidate genes in maize. J Exp Bot 50:1281–1288

    Article  CAS  Google Scholar 

  • Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome p450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578

    Article  PubMed  CAS  Google Scholar 

  • Rygulla W, Snowdon RJ, Eynck C, Koopmann B, van Tiedemann A, Lühs W, Friedt W (2007) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridisation. Phytopathology 97:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum (Sorghum bicolor (L.) Moench) identifies SbCAD2 as the brown midrib6 gene. Genetics 181:783–795

    Article  PubMed  CAS  Google Scholar 

  • Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA, Vogel KP (2008) Opportunities and roadblocks in utilization forages and small grains for liquid fuels. J Ind Microbiol Biotechnol 35:343–354

    Article  PubMed  CAS  Google Scholar 

  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105:912–920

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton R, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L Moench. Theor Appl Genet 121:333–336

    Article  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequence in grass genomes. Genome Res 12:1549–1555

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Mohali SM, Reddy RN, Madhusudhana R, Balakrishna D, Venkatesh BB, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using comparative genomic approach with rice. Theor Appl Genet 117:703–717

    Article  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717

    Article  PubMed  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  PubMed  CAS  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Benetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Guillaumie S, Verdu C, Denoue D, Pichon M, Barrière Y (2010) Cell wall phenylpropanoid-related gene expression in early maize recombinant inbred lines differing in parental alleles at a major lignin QTL position. Mol Breed 25:105–124

    Article  CAS  Google Scholar 

  • Uptmoor R, Wenzel WG, Friedt W, Donalson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325

    PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1994) Comparison of different approaches to interval mapping of quantitative trait loci. In van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Wageningen, pp 195–204

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:583–3597

    Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: II plant height and flowering. Crop Sci 36:1320–1327

    Article  CAS  Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S143–S153

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414

    Article  Google Scholar 

  • Wilson LM, Whitt SR, Ibáñez AM, Rocherford TR, GoodMan MM, Buckler IV ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Xu XY, Bai GH, Carver BF, Shaner GE (2005) Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor Appl Genet 110:244–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Willy Wenzel, ARC Potchefstroom, South Africa, for his invaluable advice regarding plant material and field experiments. We would like to gratefully acknowledge Dr Rod Snowdon for critically reading the manuscript, Benjamin Wittkop for his valuable input during fibre content analysis and Wubishet Bekele for his contribution in searching for candidate genes. We are also thankful for skilled technical assistance of Nelly Weiss, Swetlana Renner and Adriana Ochoa Fandiño in fibre content analysis. This work has been primarily supported by the German Academic Exchange Service (DAAD), the Agricultural Research Council (ARC) and the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Friedt.

Additional information

Communicated by A. Paterson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 kb)

Supplementary material 2 (TXT 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiringani, A.L., Friedt, W. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123, 999–1011 (2011). https://doi.org/10.1007/s00122-011-1642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1642-4

Keywords

Navigation