Skip to main content
Log in

Gene profiling in human blood leucocytes during recovery from septic shock

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To assess blood leucocytes gene profiling during recovery phase of septic shock; to test the relation between encoding gene expression and protein level.

Study design

Gene expression levels were studied at days 0, 1, 7 and 28 (D0, 1, 7 and 28) on a dedicated microarray of 340 genes involved in inflammatory processes.

Settings

16-bed intensive care unit, Lariboisière University hospital.

Patients

Seventeen septic shock patients enrolled when at least one additional organ dysfunction occurred.

Measurements and results

Changes over time were compared with D0 via the ratio Dx/D0. The time-related gene expression study showed significant changes in ten genes. Among them, S100A8 and S100A12 had a reduced expression over time compared with D0, whereas CD74's expression increased. The microarray results were validated by RT-qPCR for four genes. The S100A8 plasma levels decrease along recovery in parallel with the gene expression decrease. The CD74 gene expression evolution significantly correlated with HLA-DR monocyte expression.

Conclusions

These results are the first description of variations in expression of key inflammatory genes in the course of the septic shock recovery period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353

    Article  PubMed  Google Scholar 

  2. Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA (2002) Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 99:972–977

    Article  PubMed  CAS  Google Scholar 

  3. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, Barrette TR, Shankar-Sinha S, Sarma VJ, Padgaonkar VA, Ward PA (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol 159:1199–1209

    PubMed  CAS  Google Scholar 

  4. Prucha M, Ruryk A, Boriss H, Moller E, Zazula R, Herold I, Claus RA, Reinhart KA, Deigner P, Russwurm S (2004) Expression profiling: toward an application in sepsis diagnostics. Shock 22:29–33

    Article  PubMed  CAS  Google Scholar 

  5. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    Article  PubMed  CAS  Google Scholar 

  6. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred RP et al. (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. J Am Med Assoc 273:934–941

    Article  CAS  Google Scholar 

  7. Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL et al. (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. J Am Med Assoc 271:1836–1843

    Article  Google Scholar 

  8. Rice TW, Wheeler AP, Morris PE, Paz HL, Russell JA, Edens TR, Bernard GR (2006) Safety and efficacy of affinity-purified, anti-tumor necrosis factor-alpha, ovine fab for injection (CytoFab) in severe sepsis. Crit Care Med 34:2271–2281

    Article  PubMed  CAS  Google Scholar 

  9. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  PubMed  CAS  Google Scholar 

  10. Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G (2006) Systemic transcriptional analysis in survivor and non-survivor septic shock patients: a preliminary study. Immunol Lett 106:63–71

    Article  PubMed  CAS  Google Scholar 

  11. Bone RC, Sibbald WJ, Sprung CL (1992) The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101:1481–1483

    Article  PubMed  CAS  Google Scholar 

  12. Calvano SE, Greenlee PG, Reid AM, deRiesthal HF, Shires GT, Antonacci AC (1988) Granulocyte contamination of Ficoll-Hypaque preparations of mononuclear cells following thermal injury may lead to substantial overestimation of lymphocyte recovery. J Trauma 28:353–361

    Article  PubMed  CAS  Google Scholar 

  13. Ikemoto M, Tanaka T, Takai Y, Murayama H, Tanaka K, Fujita M (2003) New ELISA system for myeloid-related protein complex (MRP8/14) and its clinical significance as a sensitive marker for inflammatory responses associated with transplant rejection. Clin Chem 49:594–600

    Article  PubMed  CAS  Google Scholar 

  14. Pachot A, Monneret G, Brion A, Venet F, Bohe J, Bienvenu J, Mougin B, Lepape A (2005) Messenger RNA expression of major histocompatibility complex class II genes in whole blood from septic shock patients. Crit Care Med 33:31–38, 236–237

    Article  PubMed  CAS  Google Scholar 

  15. Roth J, Vogl T, Sorg C, Sunderkotter C (2003) Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 24:155–158

    Article  PubMed  CAS  Google Scholar 

  16. Matza D, Kerem A, Shachar I (2003) Invariant chain, a chain of command. Trends Immunol 24:264–268

    Article  PubMed  CAS  Google Scholar 

  17. Monneret G, Finck ME, Venet F, Debard AL, Bohe J, Bienvenu J, Lepape A (2004) The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett 95:193–198

    Article  PubMed  CAS  Google Scholar 

  18. Caille V, Chiche JD, Nciri N, Berton C, Gibot S, Boval B, Payen D, Mira JP, Mebazaa A (2004) Histocompatibility leukocyte antigen-D related expression is specifically altered and predicts mortality in septic shock but not in other causes of shock. Shock 22:521–526

    Article  PubMed  CAS  Google Scholar 

  19. Kerkhoff C, Klempt M, Sorg C (1998) Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim Biophys Acta 1448:200–211

    Article  PubMed  CAS  Google Scholar 

  20. PasseyRJ,XuK,HumeDA,GeczyCL (1999) S100A8: emerging functions and regulation. J Leukoc Biol 66:549–556

    PubMed  CAS  Google Scholar 

  21. RavasiT,HsuK,GoyetteJ,SchroderK, Yang Z, Rahimi F, Miranda LP, Alewood PF, Hume DA, Geczy C (2004) Probing the S100 protein family through genomic and functional analysis. Genomics 84:10–22

    Article  PubMed  CAS  Google Scholar 

  22. Koike T, Harada N, Yoshida T, Morikawa M (1992) Regulation of myeloid-specific calcium binding protein synthesis by cytosolic protein kinase C. J Biochem (Tokyo) 112:624–630

    CAS  Google Scholar 

  23. Vandal K, Rouleau P, Boivin A, Ryckman C, Talbot M, Tessier PA (2003) Blockade of S100A8 and S100A9 suppresses neutrophil migration in response to lipopolysaccharide. J Immunol 171:2602–2609

    PubMed  CAS  Google Scholar 

  24. Hsu K, Passey RJ, Endoh Y, Rahimi F, Youssef P, Yen T, Geczy CL (2005) Regulation of S100A8 by glucocorticoids. J Immunol 174:2318–2326

    PubMed  CAS  Google Scholar 

  25. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    Article  PubMed  CAS  Google Scholar 

  26. Viemann D, Barczyk K, Vogl T, Fischer U, Sunderkotter C, Schulze-Osthoff K, Roth J (2007) MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program. Blood 109:2453–2460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by “Programme Hospitalier Recherche Clinique (PHRC) AORO2006” and by “Quadrienal plan for research from the French Ministry of Research” EA 322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Payen.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-008-1049-0

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payen, D., Lukaszewicz, AC., Belikova, I. et al. Gene profiling in human blood leucocytes during recovery from septic shock. Intensive Care Med 34, 1371–1376 (2008). https://doi.org/10.1007/s00134-008-1048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1048-1

Keywords

Navigation