Skip to main content
Log in

Improved short-term survival with polyethylene glycol modified hemoglobin liposomes in critical normovolemic anemia

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the efficacy of a polyethylene glycol (PEG) modified formulation of liposome-encapsulated hemoglobin (LEH) as an oxygen-carrying blood substitute in the treatment of critical normovolemic anemia.

Design and setting

Prospective, controlled, randomized experimental study in a university research facility.

Subjects

14 anesthetized and mechanically ventilated beagle dogs.

Interventions

Animals were splenectomized and hemodiluted by exchange of whole blood for iso-oncotic hetastarch (HES). Target parameter of the hemodilution protocol was the individual critical hemoglobin concentration (Hbcrit) corresponding with the onset of O2 supply dependency of total body O2 consumption. At Hbcrit animals were randomized to receive a bolus infusion (20 ml/kg) of either LEH (n = 7) or normal saline (NS; n = 7). Subsequently animals were observed without further intervention.

Measurements and results

The primary endpoint was survival time after the completion of treatment; secondary endpoints were parameters of central hemodynamics, O2 transport and tissue oxygenation. Animals in the LEH group survived significantly longer after completion of treatment (149 ± 109 vs. 43 ± 56 min). Immediately after treatment LEH-treated animals presented with a more stable cardiovascular condition. After 30 min tissue O2 tension on the surface of a skeletal muscle was significantly higher in the LEH group (23 ± 8 vs. 9 ± 2 mmHg). Nevertheless, treatment with LEH did not decrease mortality within the observation period.

Conclusions

In this present experimental study the infusion of a PEG-modified LEH provided adequate tissue oxygenation, hemodynamic stability, and a prolongation of survival time after critical anemia. However, these effects were sustained for only a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Spahn DR, Casutt M (2000) Eliminating blood transfusions: new aspects and perspectives. Anesthesiology 93:242–255

    Article  PubMed  CAS  Google Scholar 

  2. Varney SJ, Guest JF (2003) The annual cost of blood transfusions in the UK. Transfus Med 13:205–218

    Article  PubMed  CAS  Google Scholar 

  3. Shander A, Hofmann A, Gombotz H, Theusinger OM, Spahn DR (2007) Estimating the cost of blood: past, present, and future directions. Best Pract Res Clin Anaesthesiol 21:271–289

    Article  PubMed  Google Scholar 

  4. Hebert PC, Wells GA, Blajchman MA, Marshall J, Martin CM, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340:409–417

    Article  PubMed  CAS  Google Scholar 

  5. Leal-Noval SR, Rincon-Ferrari MD, Marin-Niebla A, Cayuela A, rellano-Orden V, Marin-Caballos A, Maya-Villar R, Ferrandiz-Millon C, Murillo-Cabeza F (2006) Transfusion of erythrocyte concentrates produces a variable increment on cerebral oxygenation in patients with severe traumatic brain injury: a preliminary study. Intensive Care Med 32:1733–1740

    Article  PubMed  CAS  Google Scholar 

  6. Walsh TS, Lee RJ, Maciver CR, Garrioch M, Mackirdy F, Binning AR, Cole S, McClelland DB (2006) Anemia during and at discharge from intensive care: the impact of restrictive blood transfusion practice. Intensive Care Med 32:100–109

    Article  PubMed  Google Scholar 

  7. Spahn DR, Kocian R (2005) Artificial O2 carriers: status in 2005. Curr Pharm Des 11:4099–4114

    Article  PubMed  CAS  Google Scholar 

  8. Pape A, Kemming GI, Meisner FG, Kleen MS, Habler OP (2001) Diaspirin cross-linked hemoglobin fails to improve left ventricular diastolic function after fluid resuscitation from hemorrhagic shock. Eur Surg Res 33:318–326

    Article  PubMed  CAS  Google Scholar 

  9. Pape A, Kleen MS, Kemming GI, Meisner FG, Meier JM, Habler OP (2004) Fluid resuscitation from severe hemorrhagic shock using diaspirin cross-linked hemoglobin fails to improve pancreatic and renal perfusion. Acta Anaesthesiol Scand 48:1328–1337

    Article  PubMed  CAS  Google Scholar 

  10. Intaglietta M (1999) Microcirculatory basis for the design of artificial blood. Microcirculation 6:247–258

    Article  PubMed  CAS  Google Scholar 

  11. Winslow RM (2006) Current status of oxygen carriers ('blood substitutes'): 2006. Vox Sang 91:102–110

    Article  PubMed  CAS  Google Scholar 

  12. Buehler PW, Alayash AI (2004) Toxicities of hemoglobin solutions: in search of in-vitro and in-vivo model systems. Transfusion 44:1516–1530

    Article  PubMed  CAS  Google Scholar 

  13. Chang TM (1998) Modified hemoglobin-based blood substitutes: crosslinked, recombinant and encapsulated hemoglobin. Vox Sang 74:233–241

    PubMed  CAS  Google Scholar 

  14. Chang TM (1998) Modified hemoglobin blood substitutes: present status and future perspectives. Biotechnol Annu Rev 4:75–112

    PubMed  CAS  Google Scholar 

  15. Horn O, Pape A, Kertscho H, Zwissler B, Habler O (2007) Liposome encaspulated hemoglobin increases survival time of critical normovoelmic anemia. Eur J Anaesthesiol 24:65

    Google Scholar 

  16. Usuba A, Osuka F, Kimura T, Sato R, Fujita Y, Yamashita M, Hoshino C (1998) Liposome encapsulated hemoglobin as a resuscitation fluid for hemorrhagic shock. Artif Organs 22:116–122

    PubMed  CAS  Google Scholar 

  17. Pape A, Meier J, Kertscho H, Steche M, Laout M, Schwerdel F, Wedel M, Zwissler B, Habler OP (2006) Hyperoxic ventilation increases the tolerance of acute normovolemic anemia in anesthetized pigs. Crit Care Med 34:1475–1482

    Article  PubMed  CAS  Google Scholar 

  18. Oter S, Radermacher P, Matejovic M (2006) Can (hyperbaric) oxygen turn off the motor of multiorgan dysfunction? Intensive Care Med 32:1694–1696

    Article  PubMed  Google Scholar 

  19. Pape A, Kertscho H, Meier J, Zwissler B, Habler OP (2006) Overview of artificial O2 carriers. ISBT Sci Series 1:152–160

    Article  CAS  Google Scholar 

  20. Habler OP, Kleen MS, Pape A, Meisner FG, Kemming GI, Messmer KF (2000) Diaspirin-crosslinked hemoglobin reduces mortality of severe hemorrhagic shock in pigs with critical coronary stenosis. Crit Care Med 28:1889–1898

    Article  PubMed  CAS  Google Scholar 

  21. Standl T, Freitag M, Burmeister MA, Horn EP, Wilhelm S, Schulte am EJ (2003) Hemoglobin-based oxygen carrier HBOC-201 provides higher and faster increase in oxygen tension in skeletal muscle of anemic dogs than do stored red blood cells. J Vasc Surg 37:859–865

    Article  PubMed  Google Scholar 

  22. Kerner T, Ahlers O, Veit S, Riou B, Saunders M, Pison U (2003) DCL-Hb for trauma patients with severe hemorrhagic shock: the European “On-Scene” multicenter study. Intensive Care Med 29:378–385

    PubMed  Google Scholar 

  23. Oda T, Nakajima Y, Kimura T, Ogata Y, Fujise Y (2004) Hemodilution with liposome-encapsulated low-oxygen-affinity hemoglobin facilitates rapid recovery from ischemic acidosis after cerebral ischemia in rats. J Artif Organs 7:101–106

    PubMed  CAS  Google Scholar 

  24. Tsutsui Y, Asakawa Y, Goto H, Kimura T, Ogata Y (1998) Assessment of the oxygen transport capacity of NRCs with a 70% blood exchange in rats. Artif Cells Blood Substit Immobil Biotechnol 26:465–475

    Article  PubMed  CAS  Google Scholar 

  25. Nakai K, Usuba A, Ohta T, Kuwabara M, Nakazato Y, Motoki R, Takahashi TA (1998) Coronary vascular bed perfusion with a polyethylene glycol-modified hemoglobin-encapsulated liposome, neo red cell, in rats. Artif Organs 22:320–325

    Article  PubMed  CAS  Google Scholar 

  26. Ogata Y (2000) Evaluation of human hemoglobin vesicle as an oxygen carrier: recovery from hemorrhagic shock in rabbits. Polymers Adv Technol 11:301–306

    Article  CAS  Google Scholar 

  27. Takaori M, Fukui A (1996) Treatment of massive hemorrhage with liposome encapsulated human hemoglobin (NRC) and hydroxyethyl starch (HES) in beagles. Artif Cells Blood Substit Immobil Biotechnol 24:643–653

    Article  PubMed  CAS  Google Scholar 

  28. Usuba A, Motoki R, Ogata Y, Suzuki K, Kamitani T (1995) Effect and safety of liposome-encapsulated hemoglobin neo red cells (NRCs) as a perfusate for total cardiopulmonary bypass. Artif Cells Blood Substit Immobil Biotechnol 23:337–346

    Article  PubMed  CAS  Google Scholar 

  29. Meier JM, Kemming GI, Kisch-Wedel H, Wolkhammer S, Habler OP (2004) Hyperoxic ventilation reduces 6-hour mortality at the critical hemoglobin concentration. Anesthesiology 100:70–76

    Article  PubMed  CAS  Google Scholar 

  30. Meier JM, Kemming GI, Kisch-Wedel H, Blum J, Pape A, Habler OP (2004) Hyperoxic ventilation reduces six-hour mortality after partial fluid resuscitation from hemorrhagic shock. Shock 22:240–247

    Article  PubMed  Google Scholar 

  31. Meier JM, Pape A, Lauscher P, Zwissler B, Habler OP (2005) Hyperoxia in lethal methemoglobinemia—effects on O2 transport, tissue oxygenation and survival in pigs. Crit Care Med 33:1582–1588

    Article  PubMed  CAS  Google Scholar 

  32. Meier J, Pape A, Loniewska D, Lauscher P, Kertscho H, Zwissler B, Habler O (2007) Norepinephrine increases tolerance to acute anemia. Crit Care Med 35:1484–1492

    Article  PubMed  CAS  Google Scholar 

  33. Winslow RM (2003) Current status of blood substitute research: towards a new paradigm. J Intern Med 253:508–517

    Article  PubMed  CAS  Google Scholar 

  34. Pittman RN (2005) Oxygen transport and exchange in the microcirculation. Microcirculation 12:59–70

    Article  PubMed  CAS  Google Scholar 

  35. Szebeni J, Alving CR (1999) Complement-mediated acute effects of liposome-encapsulated hemoglobin. Artif Cells Blood Substit Immobil Biotechnol 27:23–41

    PubMed  CAS  Google Scholar 

  36. Szebeni J, Baranyi L, Savay S, Bodo M, Morse DS, Basta M, Stahl GL, Bunger R, Alving CR (2000) Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol 279:H1319–H1328

    CAS  Google Scholar 

  37. Winkler GC (1988) Pulmonary intravascular macrophages in domestic animal species: review of structural and functional properties. Am J Anat 181:217–234

    Article  PubMed  CAS  Google Scholar 

  38. Bertram TA, Overby LH, Brody AR, Eling TE (1989) Comparison of arachidonic acid metabolism by pulmonary intravascular and alveolar macrophages exposed to particulate and soluble stimuli. Lab Invest 61:457–466

    PubMed  CAS  Google Scholar 

  39. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216:106–121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Mr. W. Daut and his team's excellent performance of animal care and Mr. H. Winkelmeier's valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pape.

Additional information

The study was sponsored by a research grant from Terumo Inc., Kanagawa, Japan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pape, A., Kertscho, H., Meier, J. et al. Improved short-term survival with polyethylene glycol modified hemoglobin liposomes in critical normovolemic anemia. Intensive Care Med 34, 1534–1543 (2008). https://doi.org/10.1007/s00134-008-1082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1082-z

Keywords

Navigation