Skip to main content
Log in

Bronchoalveolar lavage fluid peptidomics suggests a possible matrix metalloproteinase-3 role in bronchopulmonary dysplasia

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Bronchoalveolar lavage fluid (BALF) is an important diagnostic source to investigate molecular changes occurring in lung disorders. The objective of this study was to assess and compare the peptidomic profiles of BALF from premature neonates with and without bronchopulmonary dysplasia (BPD).

Methods

Samples were obtained on the 3rd day of life from 34 neonates with gestational age ≤32 weeks. Two pools of samples from patients with and without BPD were analyzed by high performance liquid chromatography. Several differentially expressed peptides were collected and sequenced. Moreover, samples from single donors were analyzed by liquid chromatography-electrospray ionization mass spectrometry to define the molecular mass values of various peptides and to quantify their expression. Levels of some matrix metalloproteinases and their tissue inhibitors were also determined in single samples.

Results

Neonates of the BPD group (N = 16) showed significantly lower mean gestational age and birth weight with respect to the no-BPD group (N = 18; P < 0.0001). Levels of six peptides were significantly higher in BPD patients (P < 0.05). Two of them were identified as the albumin fragments 1–21 (2,428 Da) and 399–406 (956 Da). Levels of matrix metalloproteinase-3 (MMP-3) enzyme probably involved in albumin fragment generation were also significantly higher in the BPD group compared to the no-BPD group (P < 0.05), whereas the levels of tissue inhibitor of metalloproteinases-1 were significantly lower (P < 0.05). Levels of albumin fragments and MMP-3 showed a significant correlation (P < 0.05).

Conclusions

This study shows that proteomic techniques can be applied to investigate the involvement of proteolytic enzymes on the airways of mechanically ventilated premature infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Waittiez R, Falmagne P (2005) Proteomics of bronchoalveolar lavage fluid. J Chromatogr B Analyt Technol Biomed Life Sci 815:169–178

    Article  CAS  Google Scholar 

  2. Bowler RP, Duda B, Chan ED, Enghild JJ, Ware LB, Matthay MA, Duncan MW (2004) Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol 286:L1095–L1104

    Article  CAS  PubMed  Google Scholar 

  3. Hirsch J, Hansen KC, Burlingame AL, Matthay MA (2004) Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 287:L1–L23

    Article  CAS  PubMed  Google Scholar 

  4. Waittiez R, Hermans C, Bernard A, Lesur O, Falmagne P (1999) Human bronchoalveolar lavage fluid: two-dimensional gel electrophoresis, amino acid microsequencing and identification of major proteins. Electrophoresis 20:1634–1645

    Article  Google Scholar 

  5. Waittiez R, Hermans C, Cruyt C, Bernard A, Falmagne P (2000) Human bronchoalveolar lavage fluid protein two dimensional database: study of interstitial lung diseases. Electrophoresis 21:2703–2712

    Article  Google Scholar 

  6. Fietta AM, Bardoni AM, Salvini R, Passadore I, Morosini M, Cavagna L, Codullo V, Pozzi E, Meloni F, Montecucco C (2006) Analysis of bronchoalveolar lavage fluid proteome from systemic sclerosis patients with or without functional, clinical and radiological signs of lung fibrosis. Arthritis Res Ther 8:R160

    Article  PubMed  CAS  Google Scholar 

  7. Noël-Georis I, Bernard A, Falmagne P, Wattiez R (2001) Proteomics as the tool to search for lung disease markers in bronchoalveolar lavage. Dis Markers 17:271–284

    PubMed  Google Scholar 

  8. Plymoth A, Löfdahl CG, Ekberg-Jansson A, Dahlbäck M, Broberg P, Foster M, Fehniger TE, Marko-Varga G (2007) Protein expression patterns associated with progression of chronic obstructive pulmonary disease in bronchoalveolar lavage of smokers. Clin Chem 53:636–644

    Article  CAS  PubMed  Google Scholar 

  9. Lenz AG, Meyer B, Costabel U, Maier K (1993) Bronchoalveolar lavage fluid proteins in human lung disease: analysis by two-dimensional electrophoresis. Electrophoresis 14:242–244

    Article  CAS  PubMed  Google Scholar 

  10. Lindahl M, Ståhlbom B, Tagesson C (1995) Two-dimensional gel electrophoresis of nasal and bronchoalveolar lavage fluids after occupational exposure. Electrophoresis 16:1199–1204

    Article  CAS  PubMed  Google Scholar 

  11. Lindahl M, Ståhlbom B, Tagesson C (1999) Newly identified proteins in human nasal and bronchoalveolar lavage fluids: potential biomedical and clinical applications. Electrophoresis 20:3670–3676

    Article  CAS  PubMed  Google Scholar 

  12. Magi B, Bini L, Perari MG, Fossi A, Sanchez JC, Hochstrasser D, Paesano S, Raggiaschi R, Santucci A, Pallini V, Rottoli P (2002) Bronchoalveolar lavage fluid protein composition in patients with sarcoidosis and idiopathic pulmonary fibrosis: a two-dimensional electrophoretic study. Electrophoresis 23:3434–3444

    Article  CAS  PubMed  Google Scholar 

  13. Sabounchi-Schütt F, Aström J, Hellman U, Eklund A, Grunewald J (2003) Changes in bronchoalveolar lavage fluid proteins in sarcoidosis: a proteomics approach. Eur Respir J 21:414–420

    Article  PubMed  CAS  Google Scholar 

  14. Ashton MR, Postle AD, Hall MA, Smith SL, Kelly FJ, Normand IC (1992) Phosphatidylcholine composition of endotracheal tube aspirates of neonates and subsequent respiratory disease. Arch Dis Child 67(4 Spec No):378–382

    Article  CAS  PubMed  Google Scholar 

  15. Vento G, Matassa PG, Ameglio F, Capoluongo E, Zecca E, Tortorolo L, Martelli M, Romagnoli C (2005) HFOV in premature neonates: effects on pulmonary mechanics and epithelial lining fluid cytokines. A randomized controlled trial. Intensive Care Med 31:463–470

    Article  PubMed  Google Scholar 

  16. Su BH, Watanabe T, Shimizu M, Yanagisawa M (1997) Echocardiographic assessment of patent ductus arteriosus shunt flow pattern in premature infants. Arch Dis Child Fetal Neonatal Ed 77:F36–F40

    Article  CAS  PubMed  Google Scholar 

  17. Bancalari E, Claure N (2006) Definitions and diagnostic criteria for bronchopulmonary dysplasia. Semin Perinatol 30:164–170

    Article  PubMed  Google Scholar 

  18. Vento G, Matassa PG, Zecca E, Tortorolo L, Martelli M, De Carolis MP, Maggio L, Zini G, D’Onofrio G, Valentini S, Romagnoli C (2004) Effect of dexamethasone on tracheobronchial aspirate fluid cytology and pulmonary mechanics in preterm infants. Pharmacology 71:113–119

    Article  CAS  PubMed  Google Scholar 

  19. Inzitari R, Vento G, Capoluongo E, Boccacci S, Fanali C, Cabras T, Romagnoli C, Giardina B, Messana I, Castagnola M (2007) Proteomic analysis of salivary acidic proline-rich proteins in human pre-term and at-term newborns. J Proteome Res 6:1371–1377

    Article  CAS  PubMed  Google Scholar 

  20. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  21. Dargaville PA, South M, Vervaart P, McDougall PN (1999) Validity of markers of dilution in small volume lung lavage. Am J Respir Crit Care Med 160:778–784

    CAS  PubMed  Google Scholar 

  22. Sellers A, Murphy G (1981) Collagenolytic enzymes and their naturally occurring inhibitors. Int Rev Connect Tissue Res 9:151–190

    CAS  PubMed  Google Scholar 

  23. Nerusu KC, Warner RL, Bhagavathula N, McClintock SD, Johnson KJ, Varani J (2007) Matrix metalloproteinase-3 (stromelysin-1) in acute inflammatory tissue injury. Exp Mol Pathol 83:169–176

    Article  CAS  PubMed  Google Scholar 

  24. Fligiel SE, Standiford T, Fligiel HM, Tashkin D, Strieter RM, Warner RL, Johnson KJ, Varani J (2006) Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. Hum Pathol 37:422–430

    Article  CAS  PubMed  Google Scholar 

  25. Warner RL, Beltran L, Younkin EM, Lewis CS, Weiss SJ, Varani J, Johnson KJ (2001) Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am J Respir Cell Mol Biol 24:537–544

    CAS  PubMed  Google Scholar 

  26. Wang M, Qin X, Mudgett JS, Ferguson TA, Senior RM, Welgus HG (1999) Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response. Proc Natl Acad Sci USA 96:6885–6889

    Article  CAS  PubMed  Google Scholar 

  27. Ekekezie II, Thibeault DW, Simon SD, Norberg M, Merrill JD, Ballard RA, Ballard PL, Truog WE (2004) Low levels of tissue inhibitors of matrix metalloproteinases with a high matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of infants who develop CLD. Pediatrics 113:1709–1714

    Article  PubMed  Google Scholar 

  28. Tambunting F, Beharry KD, Hartleroad J, Waltzman J, Stavitsky Y, Modanlou HD (2005) Increased lung matrix metalloproteinase-9 levels in extremely premature baboons with bronchopulmonary dysplasia. Pediatr Pulmonol 39:5–14

    Article  PubMed  Google Scholar 

  29. Danan C, Jarreau PH, Franco ML, Dassieu G, Grillon C, Abd Alsamad I, Lafuma C, Harf A, Delacourt C (2002) Gelatinase activities in the airways of premature infants and development of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 283:L1086–L1093

    CAS  PubMed  Google Scholar 

  30. Dik WA, van Kaam AH, Dekker T, Naber BA, Janssen DJ, Kroon AA, Zimmermann LJ, Versnel MA, Lutter R (2006) Early increased level of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome. Biol Neonate 89:6–14

    Article  CAS  PubMed  Google Scholar 

  31. Sweet DG, Curley AE, Chesshyre E, Pizzotti J, Wilbourn MS, Halliday HL, Warner JA (2004) The role of matrix metalloproteinases-9 and -2 in development of neonatal chronic lung disease. Acta Paediatr 93:791–796

    Article  CAS  PubMed  Google Scholar 

  32. Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P, Andersson S (2001) Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 108:686–692

    Article  CAS  PubMed  Google Scholar 

  33. Schulz CG, Sawicki G, Lemke RP, Roeten BM, Schulz R, Cheung PY (2004) MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res 55:794–801

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Intensive Care Unit nursing staff for their invaluable collaboration on this work. They also are thankful for the financial support of Università Cattolica in Rome, MIUR, the Italian National Research Council (CNR), Università di Cagliari, Regione Sardegna and thanks fo the Fondazione Banco di Sardegna, International Scientific Institute “Paolo VI” (ISI) for their programs of scientific research promotion and diffusion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vento.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vento, G., Tirone, C., Lulli, P. et al. Bronchoalveolar lavage fluid peptidomics suggests a possible matrix metalloproteinase-3 role in bronchopulmonary dysplasia. Intensive Care Med 35, 2115–2124 (2009). https://doi.org/10.1007/s00134-009-1646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1646-6

Keywords

Navigation