Skip to main content
Log in

A novel implantation technique for engineered osteo-chondral grafts

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

We present a novel method to support precise insertion of engineered osteochondral grafts by pulling from the bone layer, thereby minimizing iatrogenic damage associated with direct manipulation of the cartilage layer. Grafts were generated by culturing human expanded chondrocytes on Hyaff®-11 meshes, sutured to Tutobone® spongiosa cylinders. Through the bone layer, shaped to imitate the surface-contours of the talar dome, two sutures were applied: the first for anterograde implantation, to pull the graft into the defect, and the second for retrograde correction, in case of a too deep insertion. All grafts could be correctly positioned into osteochondral lesions created in cadaveric ankle joints with good fit to the surrounding cartilage. Implants withstood short-term dynamic stability tests applied to the ankle joint, without delamination or macroscopic damage. The developed technique, by allowing precise and stable positioning of osteochondral grafts without iatrogenic cartilage damage, is essential for the implantation of engineered tissues, where the cartilage layer is not fully mechanically developed, and could be considered also for conventional autologous osteochondral transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bachmann G, Basad E, Lommel D, Steinmeyer J (2004) MRI in the follow-up of matrix-supported autologous chondrocyte transplantation (MACI) and microfracture. Radiologe 44:773–782

    Article  CAS  PubMed  Google Scholar 

  2. Bauer M, Jonsson K, Linden B (1987) Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg Br 69:93–96

    CAS  PubMed  Google Scholar 

  3. Canale ST, Belding RH (1980) Osteochondral lesions of the talus. J Bone Joint Surg Am 62:97–102

    CAS  PubMed  Google Scholar 

  4. Candrian C, Vonwil D, Barbero A, Bonacina E, Miot S, Farhadi J, Wirz D, Dickinson S, Hollander A, Jakob M, Li Z, Alini M, Heberer M, Martin I (2008) Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum 58:197–208

    Article  CAS  PubMed  Google Scholar 

  5. Gautier E, Kolker D, Jakob RP (2002) Treatment of cartilage defects of the talus by autologous osteochondral grafts. J Bone Joint Surg Br 84:237–244

    Article  CAS  PubMed  Google Scholar 

  6. Giannini S, Vannini F, Buda R (2002) Osteoarticular grafts in the treatment of OCD of the talus: mosaicplasty versus autologous chondrocyte transplantation. Foot Ankle Clin 7:621–633

    Article  PubMed  Google Scholar 

  7. Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85-A suppl 2:25–32

    PubMed  Google Scholar 

  8. Hangody L, Kish G, Modis L, Szerb I, Gaspar L, Dioszegi Z, Kendik Z (2001) Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 22:552–558

    CAS  PubMed  Google Scholar 

  9. Huntley JS, Bush PG, McBirnie JM, Simpson AH, Hall AC (2005) Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am 87:351–360

    Article  CAS  PubMed  Google Scholar 

  10. Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S, Zalzal P, Hurtig M (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials 27:4120–4131

    Article  CAS  PubMed  Google Scholar 

  11. Koh JL, Wirsing K, Lautenschlager E, Zhang LO (2004) The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med 32:317–320

    Article  PubMed  Google Scholar 

  12. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40:750–765

    Article  PubMed  Google Scholar 

  13. Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE, Vunjak-Novakovic G (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37:141–147

    CAS  PubMed  Google Scholar 

  14. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80–86

    Article  CAS  PubMed  Google Scholar 

  15. Nabavi-Tabrizi A, Turnbull A, Dao Q, Appleyard R (2002) Chondrocyte damage following osteochondral grafting using metal and plastic punches: comparative study in an animal model. J Orthop Surg (Hong Kong) 10:170–172

    CAS  Google Scholar 

  16. O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80:1795–1812

    PubMed  Google Scholar 

  17. Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21:2599–2606

    Article  CAS  PubMed  Google Scholar 

  18. Schenck RC Jr, Goodnight JM (1996) Osteochondritis dissecans. J Bone Joint Surg Am 78:439–456

    PubMed  Google Scholar 

  19. Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN (2000) Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int 21:119–126

    CAS  PubMed  Google Scholar 

  20. Valderrabano V, Hintermann B, Horisberger M, Fung TS (2006) Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med 34:612–620

    Article  PubMed  Google Scholar 

  21. Wendt D, Stroebel S, Jakob M, John GT, Martin I (2006) Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology 43:481–488

    CAS  PubMed  Google Scholar 

  22. Whittaker JP, Smith G, Makwana N, Roberts S, Harrison PE, Laing P, Richardson JB (2005) Early results of autologous chondrocyte implantation in the talus. J Bone Joint Surg Br 87:179–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was partially financed by the Swiss National Science Foundation (Grant No. 3200B0-110054) and by the Deutsche Arthrose-Hilfe e.V. We would like to thank Tutogen Medical Gmbh, Neunkirchen, Germany for providing the Tutobone® cylinders and Fidia Advanced Biopolymers (FIDIA, Abano Therme, Italy) for providing the Hyaff®-11 non-woven meshes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candrian, C., Barbero, A., Bonacina, E. et al. A novel implantation technique for engineered osteo-chondral grafts. Knee Surg Sports Traumatol Arthrosc 17, 1377–1383 (2009). https://doi.org/10.1007/s00167-009-0766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-009-0766-4

Keywords

Navigation