Skip to main content
Log in

Superiority of age and weight as variables in predicting osteoporosis in postmenopausal white women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Identification of women at risk for osteoporosis is of great importance for the prevention of osteoporotic fractures. Routine BMD measurement of all women is not feasible for most populations, hence identification of a high-risk subset of women is an important element of effective preventive strategies. Methods: We identified 959 postmenopausal non-Hispanic women aged 51 years and above from the NHANES III study to assess the relative contribution of risk predictors for low BMD at the whole proximal femur and the femoral neck regions. Based on recognized risk factors for osteoporosis identified by a systematic literature search, we ran several multiple linear regression models based on the results of preceding bivariate analyses. We show several models based on their explanatory ability assessed by adjusted r 2, ROC, and C-value analyses rather than on the coefficients and P values. We furthermore examined the sensitivity, specificity, and predictive values of our preferred models for various cutoff T-scores—the choice of which will vary depending on different study goals and population characteristics. Results: Age and weight were by far the most informative predictors for low bone mineral density out of a list of 20 candidate risk predictors. Our preferred prediction models for the two regions hence contained only two variables: i.e., age and measured weight. The resulting parsimonious model to predict BMD at whole proximal femur had an adjusted r 2 of 0.43, an area under the ROC curve of 0.85, and a C-value of 0.70. Similarly, prediction for BMD at the femoral neck had adjusted r 2, area under the curve, and C-value of 0.39, 0.83, and 0.66, respectively. Conclusions: The model equations, predicted T-score = −1.332−0.0404 × (age) + 0.0386 × (measured weight) and predicted T-score = −1.318−0.0360 × (age) + 0.0314 × (measured weight) for whole proximal femur and femoral neck, respectively, can be used in field conditions for screening purposes. More complex prediction equations add little explanatory power. Based on the study goals and the population characteristics, specific cutoff T-scores have to be decided before using these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D
Fig. 2A, B

Similar content being viewed by others

References

  1. Blake GM, Fogelman I (1998) Applications of bone densitometry for osteoporosis. Endocrin Metab Clin 27:267–288

    CAS  Google Scholar 

  2. Blanchet C, Dodin S, Dumont Y, Turcot-Lemay L, Beauchamp J, Prud'homme D (1998) Bone mineral density in French Canadian Women. Osteoporos Int 8:268–273

    Article  CAS  PubMed  Google Scholar 

  3. Burger H, van Daele PL, Algra D, van den Ouweland FA, Grobbee DE, Hofman A, van Kuijk C, Schütte HE, Birkenhäger JC, Pols HA (1994) The association between age and bone mineral density in men and women aged 55 years and over: the Rotterdam study. J Bone Miner Res 25:1–13

    CAS  Google Scholar 

  4. Burt VL, Harris T (1994) The third national health and nutrition examination survey: contributing data on aging and health. Gerontologist 34:486–490

    CAS  PubMed  Google Scholar 

  5. Caderette S, Jaglal SB, Kreiger N, McIsaac WJ, Darlington GA, Tu JV (2000) Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ 162:1289–1294

    CAS  PubMed  Google Scholar 

  6. Dargent-Molina P, Poitiers F, Breart G (2000) In elderly women weight is the best predictor of a very low bone mineral density: evidence from the EPIDOS study. Osteoporos Int 11:881–888

    Article  CAS  PubMed  Google Scholar 

  7. Erdtsieck R, Pols H, Algra D, Kooy P, Birkenhäger J (1994) Bone mineral density in healthy dutch women: spine and hip measuremants ustin dual-energy X-Ray absoptiometry. Neth J Med 45:198–205

    CAS  PubMed  Google Scholar 

  8. Fatayerji D, Cooper A, Eastell R (1999) Total body and regional bone mineral density in men: effect of age. Osteoporos Int 10:59–65

    Article  CAS  PubMed  Google Scholar 

  9. Glynn W, Meilahn N, Charron M, Anderson S, Kuller L, Cauley J (1995) Determinants of bone mineral density in older men. J Bone Miner Res 10:1769–1777

    CAS  PubMed  Google Scholar 

  10. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    CAS  PubMed  Google Scholar 

  11. Hanley JA, McNeil BJ (1983) A method of comparing the area under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    CAS  PubMed  Google Scholar 

  12. Hansen M, Overgaard K, Al E (1994) Assessment of age and risk factors on bone density and bone turnover in healthy premenopausal women. Osteoporos Int 4:123–128

    CAS  PubMed  Google Scholar 

  13. Hiley D, Sampietro-Colom L, Marshall Deborah, Rico R, Greandos A, Asua J (1998) The effectiveness of bone density measurement and associated treatments for prevention of fracture. Int J Technol Assess Health Care 14(2):237–254

    PubMed  Google Scholar 

  14. Jerges M, Glüer C (1997) Assessment of fracture risk by bone density measurement. Semin Nucl Med 27:261–275

    PubMed  Google Scholar 

  15. Kanis J, Melton LF, Christiansen C (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    CAS  PubMed  Google Scholar 

  16. Koh LKH, Ben Sedrine WB, Torralba TP, Kung A, Fujiwara S, Chan SP, Huang QR, Rajatanavin R, Tsai KS, Park HM, Reginster JY (2001) A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos Int 12:699–705

    Article  CAS  PubMed  Google Scholar 

  17. Kröger H, Tuppurainen M, Honkanen R, Alhave E, Saarikoski S (1994) Bone mineral density and risk factors for osteoporosis: a population-based study of 1600 perimenopausal women. Calcif Tissue Int 55:1–7

    PubMed  Google Scholar 

  18. Larcos G, Baillon L (1998) An evaluation of bone mineral density in Australian women of Asian descent. Australas Radiol 42:341–343

    CAS  PubMed  Google Scholar 

  19. Looker A, Johnston CJ, Wahner H, Dunn W, Calvo M, Harris T, Heyse S, Lindsay R (1995) Prevalence of low femoral bone density in older U.S. women from NHANES III. J Bone Miner Res 10:796–802

    CAS  PubMed  Google Scholar 

  20. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12(11):1761–1768

    CAS  PubMed  Google Scholar 

  21. Lühmann D, Kohlmann T, Lange S, Raspe H (1998) Die Rolle der Osteodensitometrie im Rahmen der Primär-, Sekundär- und Tertiärprävention / Therapie der Osteoporose. HTA-Bericht DIMDI13. Deutsches Institut für Medizinische Dokumentation und Information, Bonn

  22. Lydick E, Cook K, Turpin J, Melton M, Stine R, Byrnes C (1998) Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care 4:37–48

    CAS  PubMed  Google Scholar 

  23. Marcus R, Greendale G, Blunt B, Bush T, Sherman S, Sherwin R, Whner H, Wells B (1994) Correlates of bone mineral density in the Postmenopausal Estrogen/Progestin Interventions Trial. J Bone Miner Res 9:1467–1476

    CAS  PubMed  Google Scholar 

  24. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br J Med 312:1254–1259

    CAS  Google Scholar 

  25. Michaelsson K, Bergstrom R, Mallmin H, Holmberg L, Wolk A, Ljunghall S (1996) Screening for osteopenia and osteoporosis: selection by body composition. Osteoporos Int 6:120–126

    PubMed  Google Scholar 

  26. Murphy S, Khaw K-T, May H, Compston J (1994) Parity and bone mineral density in middle-aged women. Osteoporos Int 4:162–166

    CAS  PubMed  Google Scholar 

  27. Ray NF, Chan JK, Thamer M, Melton LJ 3rd (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    CAS  PubMed  Google Scholar 

  28. Ribbot C. Pouilles JM, Bonneu M, Tremollieres F (1992) Assessment of the risk of post-menopausal osteoporosis using clinical factors. Clin Endocrinol 36:225–228

    Google Scholar 

  29. Steiger P, Cummings S, Black D, Spencer N, Genant H (1992) Age-related decrements in bone mineral density in women over 65 J Bone Miner Res 7:625–632

    Google Scholar 

  30. Tosteson AN, Rosenthal DI, Melton LJ 3rd, Weinstein MC (1990) Cost effectiveness of screening perimenopausal white women for osteoporosis: one densitometry and hormone replacement therapy. Ann Intern Med 113:594–603

    CAS  PubMed  Google Scholar 

  31. Tsai K-S, Huang K-M, Chieng P-U, Su C-T (1991) Bone mineral density of normal Chinese women in Taiwan. Calcif Tissue Int 48:161–166

    Google Scholar 

  32. Tuppurainen M, Kröger H, Al E (1995) The effect of gynecological risk factors on lumbar and femoral bone mineral density in peri- and postmenopausal women. Maturitas 21:137–145

    Article  CAS  PubMed  Google Scholar 

  33. Van der Voort DJM, Brandon S, Dinant GJ, van Wersch JWJ (2000) Screeing for osteoporosis using easily obtainable biometrical data: diagnostic accuracy of measured, self-reported and related BMI, and related costs of bone mineral density measurements. Osteoporos Int 11:233–239

    Article  PubMed  Google Scholar 

  34. Wahner HW, Looker A, Dunn WL, Walters LC, Hauser MF, Novak C (1994) Quality control of bone densitometry in a national health survey (NHANES III) using three mobile examination centers. J Bone Mineral Res 9:951–960

    CAS  Google Scholar 

  35. Weinstein L, Ullery B, Bourguignon C (1999) A simple system to determine who needs osteoporosis screening. Obstet Gynecol 93:757–760

    Article  CAS  PubMed  Google Scholar 

  36. Whittington R, Faulds D (1994) Hormone replacement therapy: II. a pharmacoeconomic appraisal of its role in the prevention of postmenopausal osteoporosis and ischaemic heart disease. Pharmacoeconomics. 5(6):513–554

    Google Scholar 

  37. WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. WHO Technical Report Series, No. 843. World Health Organization, Geneva

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Wildner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildner, M., Peters, A., Raghuvanshi, V.S. et al. Superiority of age and weight as variables in predicting osteoporosis in postmenopausal white women. Osteoporos Int 14, 950–956 (2003). https://doi.org/10.1007/s00198-003-1487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-003-1487-z

Keywords

Navigation