Skip to main content

Advertisement

Log in

Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Periprosthetic bone loss is a major cause of concern in patients undergoing total hip arthroplasty (THA). Further studies are required to identify the factors determining the pattern of bone remodelling following THA and obtain improvements in the design and durability of prostheses. In this study, we monitored periprosthetic bone loss around two different types of hydroxyapatite coated femoral implant over a 3-year period to evaluate their design and investigate the relationship with the preoperative bone mineral density (BMD) at the spine, hip and forearm. Sixty patients (35 F, 25 M, mean age 63 years, range 46–75 years) undergoing THA were randomised to either the Anatomic Benoist Girard (ABG) or Mallory-Head (MH) femoral stem. Preoperative dual-energy X-ray absorptiometry (DXA) scans were acquired of the posteroanterior (PA) and lateral lumbar spine, the contralateral hip and the non-dominant forearm. Postoperative DXA scans were performed to measure periprosthetic BMD at 10 days (treated as baseline), 6 weeks, and 3, 6, 12, 24 and 36 months after THA using a standard Gruen zone analysis. Results were expressed as the percentage change from baseline and the data examined for the differences in bone loss between the different Gruen zones, between the ABG and MH stems, and the relationship with preoperative BMD. A total of 50 patients (24 ABG, 26 MH) completed the study. Three months after THA there was a statistically significant BMD decrease in every Gruen zone that varied between 5.6% and 13.8% for the ABG prosthesis and between 3.8% and 8.7% for the MH prosthesis. Subsequently, in most zones BMD reached a plateau or showed a small recovery. However, BMD continued to fall in Gruen zones 1 and 7 in ABG patients and Gruen zone 1 in MH patients. Bone loss was less in every Gruen zone in MH patients compared with ABG with the largest difference (10%, P=0.018) in Gruen zone 7. Highly significant relationships were found between periprosthetic bone loss and preoperative BMD measured at the PA spine (P<0.001), total hip (P=0.004) and total distal radius (P<0.001). This study showed differences between two different designs of hydroxyapatite-coated implant that confirmed that prosthesis design influences periprosthetic bone loss. The study also showed that patients’ bone density measured at the spine, hip or forearm at the time of operation was a major factor influencing bone loss around the femoral stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huo MH, Cook SM (2001) What’s new in hip arthroplasty. J Bone Joint Surg [Am] 83A:1595–1610

    Google Scholar 

  2. Huiskes R, Weinans H, van Reitbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and effects of flexible materials. Clin Orthop 274:124–134

    PubMed  Google Scholar 

  3. Niinimaki T, Junila J, Jalovaara P (2001) A proximal fixed anatomic stem reduces stress shielding. Int Orthop 25:85–88

    Article  CAS  PubMed  Google Scholar 

  4. Sychterz CJ, Engh CA (1996) The influence of clinical factors on periprosthetic bone remodeling. Clin Orthop 322:285–292

    PubMed  Google Scholar 

  5. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding—laboratory and clinical observations of noncemented total hip arthoplasty. Clin Orthop 274:79–96

    PubMed  Google Scholar 

  6. Schmalzried TP, Callaghan JJ (1999) Wear in total hip and knee replacements. J Bone Joint Surg [Am] 81A:115–136

    Google Scholar 

  7. West JD, Mayor MB, Collier JP (1987) Potential errors inherent in quantitative densitometric analysis of orthopedic radiographs—a study of total hip arthroplasty. J Bone Joint Surg [Am] 69A:58–64

    Google Scholar 

  8. Engh CA Jr, McAulley JP, Sychterz CJ, Sacco ME, Engh CA Sr (2000) The accuracy and reproducibility of radiographic assessment of stress-shielding—a postmortem analysis. J Bone Joint Surg [Am] 82A:1414–1420

  9. Smart RC, Barbagallo S, Slater GL, Kuo RS, Butler SP, Drummond RP, Sekel R (1996) Measurement of periprosthetic bone density in hip arthroplasty using dual-energy X-ray absorptiometry–reproducibility of measurements. J Arthroplasty 11:445–452

    CAS  PubMed  Google Scholar 

  10. Rahmy AI, Tonino AJ, Tan W, Ter Riet G (2000) Precision of dual energy X-ray absorptiometry in determining periprosthetic bone mineral density of the hydroxyapatite coated hip prosthesis. Hip Int 10:83–90

    Google Scholar 

  11. Martini F, Lebherz C, Mayer F, Leichtle U, Kremling E, Sell S (2000) Precision of the measurements of periprosthetic bone mineral density in hips with custom made femoral stem. J. Bone Joint Surg [Br] 82B:1065–1071

    Google Scholar 

  12. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW (1993) Dual-energy X-ray absorptiometery measurement of bone mineral density around porous-coated cementless femoral implants—methods and preliminary results. J Bone Joint Surg [Br] 75:279–287

    Google Scholar 

  13. Marchetti ME, Steinberg GG, Greene JM, Jenis LG, Baran DT (1996) A prospective study of proximal femur bone mass following cemented and uncemented hip arthroplasty. J Bone Miner Res 11:1033–1039

    CAS  PubMed  Google Scholar 

  14. McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Surg [Br] 73:774–778

    Google Scholar 

  15. Kiratli BJ, Checovich MM, McBeath AA, Wilson MA, Heiner JP (1996) Measurement of bone mineral density by dual-energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 11:184–193

    PubMed  Google Scholar 

  16. Kroger H, Vanninen E, Overmyer M, Miettinen H, Rushton N, Suomalainen O (1997) Periprosthetic bone loss and regional bone turnover in uncemented total hip arthroplasty: a prospective study using high resolution single photon emission tomography and dual-energy X-ray absorptiometry. J Bone Miner Res 12:487–492

    CAS  PubMed  Google Scholar 

  17. Trevisan C, Bigoni M, Randelli G, Marinoni EC, Peretti G, Ortolani S (1997) Periprosthetic bone density around fully hydroxyapatite coated femoral stem. Clin Orthop 340:109–117

    PubMed  Google Scholar 

  18. Spittlehouse AJ, Smith TW, Eastell A (1998) Bone loss around 2 different types of hip prostheses. J Arthoplasty 13:422–427

    CAS  Google Scholar 

  19. Kroger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O (1996) Evaluation of periprosthetic bone using dual-energy X-ray absorptiometry. Precision of the method and effect of operation on bone mineral density. J. Bone Miner Res 11:1526–1530

    CAS  PubMed  Google Scholar 

  20. Rosenthall L, Bobyn JD, Tanzer M (1999) Bone densitometry: influence of prosthetic design and hydroxyapatite coating on regional adaptive bone remodelling. Int Orthop 23:325–329

    Article  CAS  PubMed  Google Scholar 

  21. Wixson RL, Stulberg SD, Van Flandern GJ, Puri L (1997) Maintenance of proximal bone mass with an uncemented femoral stem: analysis with dual energy X-ray absorptiometry. J Arthroplasty 12:365–372

    CAS  PubMed  Google Scholar 

  22. Venesmaa PK, Kroger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM (2001) Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry: a 3-year follow-up study. J Bone Miner Res 16:1056–1061

    CAS  PubMed  Google Scholar 

  23. Sabo D, Reiter A, Simank HG, Thomsen M, Lukoschek M, Ewerbeck (1997) Periprosthetic mineralization around cementless total hip endoprosthesis: Longitudinal study and cross-sectional study on titanium threaded acetabular cup and cementless Spotorno with DEXA. Calcif Tissue Int 62:177–182

    Article  Google Scholar 

  24. Rosenthall L, Bobyn JD, Brooks CE (1999) Temporal changes of periprosthetic bone density in patients with a modular noncemented femoral prosthesis. J. Arthroplasty 14:71–76

    CAS  Google Scholar 

  25. Tanzer M, Kantor S, Rosenthall L, Bobyn JD (2001) Femoral remodeling after porous coated total hip arthroplasty with and without hydroxyapatite tricalcium phosphate coating: a prospective randomized trial. J Arthoplasty 16:522–528

    Google Scholar 

  26. Nishii T, Sugano N, Masuhara K, Shibuya T, Ochi T, Tamura S (1997) Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin Orthop Rel Res 339:121–131

    Article  Google Scholar 

  27. Gruen TA, McNeice GM, Amstutz HC (1979) Modes of failure of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  28. Altman DG (1991) Practical statistics for medical research. Chapman Hall, London, pp 327–331

  29. Hall ML, Heavens J, Ell P (1991) Variation between femurs as measured by dual-energy X-ray absorptiometry. Eur J Nucl Med 18:38–40

    CAS  PubMed  Google Scholar 

  30. Nevitt MC, Lane MN, Scott JC, Hochberg MC, Pressman AR, Genant HK, Cummings SR (1995) Radiographic osteoarthritis of the hip and bone mineral density. Arthr Rheum 38:907–916

    CAS  Google Scholar 

  31. LeBlanc A, Schneider V, Krebs J, Evans H, Jhingran S, Johnson P (1987) Spinal bone density after five weeks of bed rest. Calcif Tissue Int 41:259–261

    CAS  PubMed  Google Scholar 

  32. Rodan GA (1992) Introduction to bone biology. Bone 13:S3–S6

    CAS  PubMed  Google Scholar 

  33. Kelly TL (1990) Bone mineral density reference databases for American men and women. J Bone Miner Res 5:S249

    Google Scholar 

  34. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC, Lindsay RL (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  35. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    CAS  PubMed  Google Scholar 

  36. Hosking D, Chilvers CE, Christiansen C, Ravn P, Wasnich R, Ross P, McClung M, Balske A, Thompson D, Daley M, Yates AJ (1998) Prevention of bone loss in postmenopausal women under 60 years of age. Early postmenopausal intervention cohort study group. N Engl J Med 338:485–492

    PubMed  Google Scholar 

  37. Tonino RP, Meunier PJ, Emkey R, Rodriguez-Portales JA, Menkes C-J, Wasnich RD, Bone HG, Santora AC, Wu M, Desai R, Ross PD (2000) Skeletal benefits of alendronate: 7-year treatment of postmenopausal osteoporotic women. J Clin Endocrinol Metab 85:3109–3115

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmy, A.I.A., Gosens, T., Blake, G.M. et al. Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15, 281–289 (2004). https://doi.org/10.1007/s00198-003-1546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-003-1546-5

Keywords

Navigation