Skip to main content
Log in

The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the National Osteoporosis Risk Assessment (NORA)

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

This study evaluates the effect of age and bone mineral density (BMD) on the absolute, excess, and relative risk for osteoporotic fractures at the hip, wrist, forearm, spine, and rib within 3 years of peripheral BMD testing in postmenopausal women over a wide range of postmenopausal ages.

Methods

Data were obtained from 170,083 women, aged 50–99 years, enrolled in the National Osteoporosis Risk Assessment (NORA) following recruitment from their primary care physicians’ offices across the United States. Risk factors for fracture and peripheral BMD T-scores at the heel, forearm, or finger were obtained at baseline. Self-reported new fractures at the hip, spine, rib, wrist, and forearm were obtained from questionnaires at 1- and 3-year follow-ups. Absolute, excess (attributable to low BMD), and unadjusted and adjusted relative risks of fracture were calculated.

Results

At follow-up, 5312 women reported 5676 fractures (868 hip, 2420 wrist/forearm, 1531 rib, and 857 spine). Absolute risk of fracture increased with age for all fracture sites. This age-effect was most evident for hip fracture – both the incidence and the excess risk of hip fracture for women with low BMD increased at least twofold for each decade increase in age. The relative risk for any fracture per 1 SD decrease in BMD was similar across age groups (p>0.07). Women with low BMD (T-score <−1.0) had a similar relative risk for fracture regardless of age.

Conclusions

At any given BMD, not only the absolute fracture risk but also the excess fracture risk increased with advancing age. Relative risk of fracture for low bone mass was consistent across all age groups from 50 to 99 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chrischilles EA, Butler CD, Davis CS, Wallace RB (1991) A model of lifetime osteoporosis impact. Arch Intern Med 151:2026–2032

    Article  PubMed  CAS  Google Scholar 

  2. Greendale GA, Barrett-Connor E, Ingles S, Haile R (1995) Late physical and functional effects of osteoporotic fracture in women: the Rancho Bernardo Study. J Am Geriatr Soc 43:955–961

    PubMed  CAS  Google Scholar 

  3. National Osteoporosis Foundation (1998) Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost–effectiveness analysis. Osteoporos Int 8[Suppl 4]:7–80

    Google Scholar 

  4. Ensrud KE, Thompson DE, Cauley JA, Nevitt MC, Kado DM, Hochberg MC, Santora AC, Black DM (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc 48:241–249

    PubMed  CAS  Google Scholar 

  5. Ray NF, Chan JK, Thamer M, Melton LJ (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    Article  PubMed  CAS  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Article  PubMed  CAS  Google Scholar 

  7. Hui SL, Slemenda CW, Johnston CC Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    Article  PubMed  CAS  Google Scholar 

  8. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W (1992) Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 7:633–638

    PubMed  CAS  Google Scholar 

  9. Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, Mascioli SR, Scott JC, Seeley DG, Steiger P, et al. (1990) Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA 263:665–668

    Article  PubMed  CAS  Google Scholar 

  10. Chang KP, Center JR, Nguyen TV, Eisman JA (2004) Incidence of hip and other osteoporotic fractures in elderly men and women: Dubbo osteoporosis epidemiology study. J Bone Miner Res 19:532–536

    Article  PubMed  Google Scholar 

  11. Schott AM, Kassai Koupai B, Hans D, Dargent-Molina P, Ecochard R, Bauer DC, Breart G, Meunier PJ (2004) Should age influence the choice of quantitative bone assessment technique in elderly women? The EPIDOS study. Osteoporos Int 15:196–203

    Article  PubMed  CAS  Google Scholar 

  12. Schuitt SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  Google Scholar 

  13. Kroger H, Huopio J, Honkanen R, Tuppurainen M, Puntila E, Alhava E, Saarikoski S (1995) Prediction of fracture risk using axial bone mineral density in a perimenopausal population: a prospective study. J Bone Miner Res 10:302–306

    PubMed  CAS  Google Scholar 

  14. Siris ES, Miller PD, Barrett-Connor E, Abbott TA, Sherwood LM, Berger ML (1998) Design of NORA, the National Osteoporosis Risk Assessment Program: a longitudinal US registry of postmenopausal women. Osteoporos Int 8[Suppl 1]:62–69

    Google Scholar 

  15. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  PubMed  CAS  Google Scholar 

  16. Fasano G, Gaither K, Siris E, Miller P, Barrett-Connor E, Berger M, Sherwood L, Santora A, Faulkner K (1998) The impact of quality assurance on bone densitometry in the National Osteoporosis Risk Assessment. Bone 23:S590

    Google Scholar 

  17. Miller PD, Siris ES, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Chen Y-T, Berger ML, Santora AC, Sherwood LM (2002) Prediction of fracture risk in postmenopausal Caucasian women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment (NORA). J Bone Miner Res 17:2222–2230

    Article  PubMed  Google Scholar 

  18. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20:185–194

    Article  PubMed  Google Scholar 

  19. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR (1991) Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures Research Group. Ann Intern Med 115:837–842

    PubMed  CAS  Google Scholar 

  20. Dias JJ, Wray CC, Jones JM (1987) Osteoporosis and Colles’ fractures in the elderly. J Hand Surg Br 12:57–59

    Article  PubMed  CAS  Google Scholar 

  21. Earnshaw SA, Cawte SA, Worley A, Hosking DJ (1998) Colles’ fracture of the wrist as an indicator of underlying osteoporosis in postmenopausal women: a prospective study of bone mineral density and bone turnover rate. Osteoporos Int 8:53–60

    Article  PubMed  CAS  Google Scholar 

  22. Horowitz M, Wishart JM, Bochner M, Need AG, Chatterton BE, Nordin BE (1988) Mineral density of bone in the forearm in premenopausal women with fractured wrists. BMJ 297:1314–1315

    Article  PubMed  CAS  Google Scholar 

  23. US Census Bureau National Estimates. http://www.census.gov/popest/national/asrh/NC-EST2003-as.html. 2003. 10–5–2004

  24. Nevitt MC, Johnell O, Black DM, Ensrud K, Genant HK, Cummings SR (1994) Bone mineral density predicts non-spine fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:325–331

    Article  PubMed  CAS  Google Scholar 

  25. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  26. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  27. Nevitt MC, Cummings S (1993) Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc 41:1226–1234

    PubMed  CAS  Google Scholar 

  28. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112

    Article  PubMed  CAS  Google Scholar 

  29. Hannan MT, Felson DT, Anderson JJ (1992) Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res 7:547–553

    Article  PubMed  CAS  Google Scholar 

  30. Chapuy MC, Schott AM, Garnero P, Hans D, Delmas PD, Meunier PJ (1996) Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. EPIDOS Study Group. J Clin Endocrinol Metab 81:1129–1133

    Article  PubMed  CAS  Google Scholar 

  31. Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7:439–443

    Article  PubMed  CAS  Google Scholar 

  32. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11:669–674

    Article  PubMed  CAS  Google Scholar 

  33. Hui SL, Slemenda CW, Johnston CCJr (1989) Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 111:355–361

    PubMed  CAS  Google Scholar 

  34. Grundy SM, Paternak R, Greenland P, Smith S, Fuster V (1999) Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. J Am Coll Cardiol 34:1348–1359

    Article  PubMed  CAS  Google Scholar 

  35. Barrett-Connor E, Gore R, Browner WS, Cummings SR (1998) Prevention of osteoporotic hip fracture: global versus high-risk strategies. Osteoporos Int 8:S2–S7

    PubMed  Google Scholar 

  36. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112

    Article  PubMed  Google Scholar 

  37. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793

    Article  PubMed  CAS  Google Scholar 

  38. Ismail AA, O’Neill TW, Cockerill W, Finn JD, Cannata JB, Hoszowski K, Johnell O, Matthis C, Raspe H, Raspe A, Reeve J, Silman AJ (2000) Validity of self-report of fractures: results from a prospective study in men and women across Europe. EPOS Study Group. European Prospective Osteoporosis Study Group. Osteoporos Int 11:248–254

    Article  PubMed  CAS  Google Scholar 

  39. Honkanen K, Honkanen R, Heikkinen L, Kroger H, Saarikoski S (1999) Validity of self-reports of fractures in perimenopausal women. Am J Epidemiol 150:511–516

    PubMed  CAS  Google Scholar 

  40. Melton LJ (1997) The prevalence of osteoporosis. J Bone Miner Res 12:1769–7171

    Article  PubMed  Google Scholar 

  41. Looker AC, Johnston CC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Lindsay RL (1995) Prevalence of low femoral bone density in older U.S. women from NHANES III. J Bone Miner Res 10:796–802

    PubMed  CAS  Google Scholar 

  42. Faulkner KG, Roberts LA, McClung MR (1996) Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 6:432–436

    Article  PubMed  CAS  Google Scholar 

  43. Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350

    Article  PubMed  CAS  Google Scholar 

  44. Simmons A, Simpson DE, O’Doherty MJ, Barrington S, Coakley AJ (1997) The effects of standardization and reference values on patient classification for spine and femur dual-energy X-ray absorptiometry. Osteoporos Int 7:200–206

    Article  PubMed  CAS  Google Scholar 

  45. Sweeney AT, Malabanan AO, Blake MA, Weinberg J, Turner A, Ray P, Holick MF (2002) Bone mineral density assessment: comparison of dual-energy X-ray absorptiometry measurements at the calcaneus, spine, and hip. J Clin Densitom 5:57–62

    Article  PubMed  Google Scholar 

  46. Blake GM, Fogelman I (2001) Peripheral or central densitometry: does it matter which technique we use? J Clin Densitom 4:83–96

    Article  PubMed  CAS  Google Scholar 

  47. McMahon K, Kalnins S, Freund J (2003) Discordance in lumbar spine T scores and non-standardization of standard deviations. J Clin Densitom 6:1–6

    Article  PubMed  Google Scholar 

  48. Marshall D, Johnell O, Wedel H (1996) Meta–analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    PubMed  CAS  Google Scholar 

  49. Greenspan SL, Cheng S, Miller PD, Orwoll ES (2001) Clinical performance of a highly portable, scanning calcaneal ultrasonometer. Osteoporos Int 12:391–398

    Article  PubMed  CAS  Google Scholar 

  50. Clowes JA, Peel NFA, Eastell R (2002) Fractures of the distal forearm, humerus, hip and vertebrae: Association with peripheral and axial densitometry measurements. J Bone Miner Res 17:S186

    Google Scholar 

  51. Cummings SR, Black D (1995) Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 98:24S–28S

    Article  PubMed  CAS  Google Scholar 

  52. Rothman KJ, Greenland S (1998) Modern epidemiology. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

Download references

Acknowledgements

National Osteoporosis Risk Assessment (NORA) was funded and managed by Merck & Co Inc., in collaboration with the International Society for Clinical Densitometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Siris.

Additional information

Funding/Support: NORA was funded and managed by Merck & Co., Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siris, E.S., Brenneman, S.K., Barrett-Connor, E. et al. The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporos Int 17, 565–574 (2006). https://doi.org/10.1007/s00198-005-0027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-0027-4

Keywords

Navigation