Skip to main content

Advertisement

Log in

Relationships between fat and bone

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Body weight impacts both bone turnover and bone density, making it, therefore, an important risk factor for vertebral and hip fractures and ranking it alongside age in importance. The effect of body weight is probably contributed to by both fat mass and lean mass, though in postmenopausal women, fat mass has been more consistently demonstrated to be important. A number of mechanisms for the fat-bone relationship exist and include the effect of soft tissue mass on skeletal loading, the association of fat mass with the secretion of bone active hormones from the pancreatic beta cell (including insulin, amylin, and preptin), and the secretion of bone active hormones (e.g., estrogens and leptin) from the adipocyte. These factors alone probably do not fully explain the observed clinical associations, and study of the actions on bone of novel hormones related to nutrition is an important area of further research. An understanding of this aspect of bone biology may open the way for new treatments of osteoporosis. More immediately, the role of weight maintenance in the prevention of osteoporosis is an important public health message that needs to be more widely appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doyle F, Brown J, Lachance C (1970) Relation between bone mass and muscle weight. Lancet 1:391–393

    PubMed  CAS  Google Scholar 

  2. Khosla S, Atkinson EJ, Riggs BL, Melton LJ (1996) Relationship between body composition and bone mass in women. J Bone Miner Res 11:857–863

    PubMed  CAS  Google Scholar 

  3. Reid IR, Evans MC, Ames RW (1994) Volumetric bone density of the lumbar spine is related to fat mass but not lean mass in normal postmenopausal women. Osteoporos Int 4:362–367

    PubMed  CAS  Google Scholar 

  4. Reid IR, Plank LD, Evans MC (1992) Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 75:779–782

    PubMed  CAS  Google Scholar 

  5. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ, Meunier PJ, Pols HAP, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos Int 16:1330–1338

    PubMed  Google Scholar 

  6. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: The EPIDOS prospective study. Osteoporos Int 8:247–254

    PubMed  CAS  Google Scholar 

  7. Lau EMC, Chan YH, Chan M, Woo J, Griffith J, Chan HHL, Leung PC (2000) Vertebral deformity in Chinese men: Prevalence, risk factors, bone mineral density, and body composition measurements. Calcif Tissue Int 66:47–52

    PubMed  CAS  Google Scholar 

  8. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, Lim TMT, Cundy TF (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women- a key role for fat mass. J Clin Endocrinol Metab 75:45–51

    PubMed  CAS  Google Scholar 

  9. Reid IR, Ames RW, Evans MC, Sharpe SJ, Gamble GD (1994) Determinants of the rate of bone loss in normal postmenopausal women. J Clin Endocrinol Metab 79:950–954

    PubMed  CAS  Google Scholar 

  10. Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR (2002) Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clinical Endocrinology 56:703–711

    PubMed  CAS  Google Scholar 

  11. Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. J Bone Miner Res 14:1622–1627

    PubMed  CAS  Google Scholar 

  12. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    PubMed  CAS  Google Scholar 

  13. Robbins J, Schott AM, Azari R, Kronmal R (2006) Body mass index is not a good predictor of bone density: Results from WHI, CHS, and EPIDOS. J Clin Densitom 9:329–334

    PubMed  Google Scholar 

  14. Reid IR, Legge M, Stapleton JP, Evans MC, Grey AB (1995) Regular exercise dissociates fat mass and bone density in premenopausal women. J Clin Endocrinol Metab 80:1764–1768

    PubMed  CAS  Google Scholar 

  15. Rico H, Revilla M, Cardenas JL, Villa LF, Fraile E, Martin FJ, Arribas I (1994) Influence of Weight and Seasonal Changes on Radiogrammetry and Bone Densitometry. Calcif Tissue Int 54:385–388

    PubMed  CAS  Google Scholar 

  16. Wapniarz M, Lehmann R, Reincke M, Schonau E, Klein K, Allolio B (1997) Determinants of radial bone density as measured by pQCT in pre- and postmenopausal women - the role of bone size. J Bone Miner Res 12:248–254

    PubMed  CAS  Google Scholar 

  17. Vico L, Prallet B, Chappard D, Pallot-Prades B, Pupier R, Alexandre C (1992) Contributions of chronological age, age at menarche and menopause and of anthropometric parameters to axial and peripheral bone densities. Osteoporos Int 2:153–158

    PubMed  CAS  Google Scholar 

  18. Krieg MA, Cornuz J, Jacquet AF, Thiebaud D, Burckhardt P (1998) Influence of anthropometric parameters and biochemical markers of bone metabolism on quantitative ultrasound of bone in the institutionalized elderly. Osteoporos Int 8:115–120

    PubMed  CAS  Google Scholar 

  19. Assantachai P, Sriussadaporn S, Thamlikitkul V, Sitthichai K (2006) Body composition: gender-specific risk factor of reduced quantitative ultrasound measures in older people. Osteoporos Int 17:1174–1181

    PubMed  CAS  Google Scholar 

  20. Heaney RP, Bargerlux MJ, Davies KM, Ryan RA, Johnson ML, Gong G (1997) Bone dimensional change with age - interactions of genetic, hormonal, and body size variables. Osteoporos Int 7:426–431

    PubMed  CAS  Google Scholar 

  21. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu TH, Li ZP, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu XP (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154

    PubMed  CAS  Google Scholar 

  22. Goulding A, Taylor RW, Jones IE, Manning PJ, Williams SM (2002) Spinal overload: A concern for obese children and adolescents? Osteoporos Int 13:835–840

    PubMed  CAS  Google Scholar 

  23. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. International Journal of Obesity 24:627–632

    PubMed  CAS  Google Scholar 

  24. Clark EM, Ness AR, Tobias JH (2006) Adipose Tissue Stimulates Bone Growth in Prepubertal Children. J Clin Endocrinol Metab 91:2534–2541

    PubMed  CAS  Google Scholar 

  25. Janicka A, Wren TAL, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147

    PubMed  CAS  Google Scholar 

  26. Johnell O, Oneill T, Felsenberg D, Kanis J, Cooper C, Silman AJ, Abendroth K, Agnusdei D, Antoniou A, Aroso A, Banzer D, Benevolenskaya LI, Bergmann K, Bhalla AK, Andia JBC, Czekalski S, Delmas PD, Dequeker J, Curiel MD, Lopez JDD, Dilsen G, Eastell R, Falch JA, Felsch B, Franke J (1997) Anthropometric measurements and vertebral deformities. Am J Epidemiol 146:287–293

    Google Scholar 

  27. Ensrud KE, Lipschutz RC, Cauley JA, Seeley D, Nevitt MC, Scott J, Orwoll ES, Genant HK, Cummings SR (1997) Body size and hip fracture risk in older women - a prospective study. Am J Med 103:274–280

    PubMed  CAS  Google Scholar 

  28. Vogt MT, Cauley JA, Tomaino MM, Stone K, Williams JR, Herndon JH (2002) Distal radius fractures in older women: A 10-year follow-up study of descriptive characteristics and risk factors. The study of osteoporotic fractures. J Am Geriatr Soc 50:97–103

    PubMed  Google Scholar 

  29. Goulding A, Grant AM, Williams SM (2005) Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Mineral Res 20:2090–2096

    Google Scholar 

  30. Revilla M, Villa LF, Sanchez-Atrio A, Hernandez ER, Rico H (1997) Influence of body mass index on the age-related slope of total and regional bone mineral content. Calcif Tissue Int 61:134–138

    PubMed  CAS  Google Scholar 

  31. Ricci TA, Heymsfield SB, Pierson RN, Stahl T, Chowdhury HA, Shapses SA (2001) Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr 73:347–352

    PubMed  CAS  Google Scholar 

  32. Care AD, Abbas SK, Pell J, Seitz PK, Cooper CW (1998) Stimulatory effect of insulin on calcitonin secretion. Horm Metab Res 30:200–205

    PubMed  CAS  Google Scholar 

  33. D’Erasmo E, Pisani D, Ragno A, Raejntroph N, Vecci E, Acca M (1999) Calcium homeostasis during oral glucose load in healthy women. Horm Metab Res 31:271–273

    Article  PubMed  CAS  Google Scholar 

  34. Clowes JA, Robinson RT, Heller SR, Eastell R, Blumsohn A (2002) Acute changes of bone turnover and PTH induced by insulin and glucose: Euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab 87:3324–3329

    PubMed  CAS  Google Scholar 

  35. Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJS, Reid IR (2001) Effects of calcitonin, amylin and calcitonin gene-related peptide on osteoclast development. Bone 29:162–168

    PubMed  CAS  Google Scholar 

  36. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30:886–890

    PubMed  CAS  Google Scholar 

  37. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EEG, Byrjalsen I, Krarup T, Holst JJ, Christiansen C (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189

    PubMed  CAS  Google Scholar 

  38. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C (2002) Mechanism of circadian variation in bone resorption. Bone 30:307–313

    PubMed  CAS  Google Scholar 

  39. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, Mulloy AL, Rasmussen H, Qin F, Ding KH, Isales CM (2000) Osteoblast-derived cells express functional glucose dependent insulinotropic peptide receptors. Endocrinology 141:1228–1235

    PubMed  CAS  Google Scholar 

  40. Bollag RJ, Zhong Q, Ding KH, Phillips P, Zhong L, Qin F, Cranford J, Mulloy AL, Cameron R, Isales CM (2001) Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 177:35–41

    PubMed  CAS  Google Scholar 

  41. Xie D, Cheng H, Hamrick M, Zhong Q, Dong KH, Correa D, Williams S, Mulloy A, Bollag W, Bollag RJ, Runner RR, McPherson JC, Insogna K, Isales CM (2005) Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 37:759–769

    PubMed  CAS  Google Scholar 

  42. Haderslev KV, Jeppesen PB, Hartmann B, Thulesen J, Sorensen HA, Graff J, Hansen BS, Tofteng F, Poulsen SS, Madsen JL, Holst JJ, Staun N, Mortensen PB (2002) Short-term administration of glucagon-like peptide-2. Effects on bone mineral density and markers of bone turnover in short-bowel patients with no colon. Scand J Gastroenterol 37:392–398

    PubMed  CAS  Google Scholar 

  43. Undale AH, Drucker DJ, Moedder UIL, Oursler MJ, Fraser DG, Xiao J, Khosla S, Clowes JA (2006) Deletion of glucagon-like peptide-2 receptor leads to marked skeletal deficits in growing mice. J Bone Mineral Res 21 (suppl 1):s44

    Google Scholar 

  44. Ihle R, Loucks AB (2004) Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 19:1231–1240

    PubMed  Google Scholar 

  45. Cadogan J, Eastell R, Jones N, Barker ME (1997) Milk intake and bone mineral acquisition in adolescent girls - randomised, controlled intervention trial. Br Med J 315:1255–1260

    CAS  Google Scholar 

  46. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP (1998) Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture - a randomized, double-blind, placebo-controlled trial. Ann Intern Med 128:801ff

    Google Scholar 

  47. Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, Takeda S, Takeuchi Y, Fukumoto S, Kangawa K, Nagata K, Kojima M (2005) Ghrelin directly regulates bone formation. J Bone Mineral Res 20:790–798

    CAS  Google Scholar 

  48. Delhanty PJD, van der Eerden BCJ, van der Velde M, Gauna C, Pols HAP, Jahr H, Chiba H, van der Lely AJ, van Leeuwen J (2006) Ghrelin and unacylated ghrelin stimulate human osteoblast growth via mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) pathways in the absence of GHS-R1a. J Endocrinol 188:37–47

    PubMed  CAS  Google Scholar 

  49. Kim SW, Her SJ, Park SJ, Kim D, Park KS, Lee HY, Han BH, Kim MS, Shin CS, Kim SY (2005) Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone 37:359–369

    PubMed  CAS  Google Scholar 

  50. Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, Netti C, Cocchi D (2005) Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol 184:249–256

    PubMed  CAS  Google Scholar 

  51. Misra M, Miller KK, Stewart V, Hunter E, Kuo K, Herzog DB, Klibanski A (2005) Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. J Clin Endocrinol Metab 90:5082–5087

    PubMed  CAS  Google Scholar 

  52. Weiss LA, Langenberg C, Barrett-Connor E (2006) Ghrelin and bone: Is there an association in older adults?: The Rancho Bernardo study. J Bone Mineral Res 21:752–757

    CAS  Google Scholar 

  53. Pun KK, Lau P, Ho PW (1989) The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line. J Bone Miner Res 4:853–862

    Article  PubMed  CAS  Google Scholar 

  54. Hickman J, McElduff A (1989) Insulin promotes growth of the cultured rat osteosarcoma cell line UMR-106-01: an osteoblast-like cell. Endocrinology 124:701–776

    Article  PubMed  CAS  Google Scholar 

  55. Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495

    PubMed  CAS  Google Scholar 

  56. Reid IR, Evans MC, Cooper GJS, Ames RW, Stapleton J (1993) Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol 265:E655–E659

    PubMed  CAS  Google Scholar 

  57. Stolk RP, Vandaele PLA, Pols HAP, Burger H, Hofman A, Birkenhager JC, Lamberts SWJ, Grobbee DE (1996) Hyperinsulinemia and bone mineral density in an elderly population - the Rotterdam study. Bone 18:545–549

    PubMed  CAS  Google Scholar 

  58. Haffner SM, Bauer RL (1993) The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metab Clin Exp 42:735–738

    PubMed  CAS  Google Scholar 

  59. Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H (2000) Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124–129

    PubMed  CAS  Google Scholar 

  60. Ahmed LA, Schirmer H, Berntsen GK, Fonnebo V, Joakimsen RMJ (2006) Features of the metabolic syndrome and the risk of non-vertebral fractures: The Tromso study. Osteoporos Int 17:426–432

    PubMed  CAS  Google Scholar 

  61. Dagogojack S, Alali N, Qurttom M (1997) Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab 82:2821–2825

    CAS  Google Scholar 

  62. Wetvik J (1996) Radiological features in generalized lipodystrophy. Acta Paediatrica 413 (suppl):44–51

    Google Scholar 

  63. Leidig-Bruckner G, Ziegler R (2001) Diabetes mellitus a risk for osteoporosis? Exp Clin Endocrinol Diabetes 109:S493–S514

    PubMed  CAS  Google Scholar 

  64. Rakic V, Davis WA, Chubb SAP, Islam FMA, Prince RL, Davis TME (2006) Bone mineral density and its determinants in diabetes: the Fremantle Diabetes Study. Diabetologia 49:863–871

    PubMed  CAS  Google Scholar 

  65. Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500

    PubMed  Google Scholar 

  66. Cornish J, Callon KE, Cooper GJS, Reid IR (1995) Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun 207:133–139

    PubMed  CAS  Google Scholar 

  67. Cornish J, Callon KE, King AR, Cooper GJS, Reid IR (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol: Endocrinol Metab 38:E694–E699

    Google Scholar 

  68. Horcajada-Molteni MN, Davicco MJ, Lebecque P, Coxam V, Young AA, Barlet JP (2000) Amylin inhibits ovariectomy-induced bone loss in rats. J Endocrinol 165:663–668

    PubMed  CAS  Google Scholar 

  69. Horcajada-Molteni MN, Chanteranne B, Lebecque P, Davicco MJ, Coxam V, Young A, Barlet JP (2001) Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res 16:958–965

    PubMed  CAS  Google Scholar 

  70. Davey RA, Moore AJ, Chiu MWS, Notini AJ, Morris HA, Zajac JD (2006) Effects of amylin deficiency on trabecular bone in young mice are sex-dependent. Calcif Tissue Int 78:398–403

    PubMed  CAS  Google Scholar 

  71. Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin J, Chan VA, Grey AB, Naot D, Buchanan CM, Cooper GJ, Reid IR (2007) Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol: Endocrinol Metab 292:E117–E122

    CAS  Google Scholar 

  72. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: A randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310

    PubMed  CAS  Google Scholar 

  73. Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM, Morris DC (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087–1094

    PubMed  CAS  Google Scholar 

  74. Klein RF, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos AS, Shea M, Waters RV, Belknap JK, Peltz G, Orwoll ES (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–232

    PubMed  CAS  Google Scholar 

  75. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke HZ, Swick AG (2000) Leptin is a potent stimulator of bone growth in ob/ob mice. Regulatory Pept 92:73–78

    CAS  Google Scholar 

  76. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415

    PubMed  CAS  Google Scholar 

  77. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638

    PubMed  CAS  Google Scholar 

  78. Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85:825–836

    PubMed  CAS  Google Scholar 

  79. Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, Gordeladze JO, Drevon CA (2001) Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res 16:1426–1433

    PubMed  CAS  Google Scholar 

  80. Iwaniec UT, Shearon CC, Heaney RP, Cullen DM, Yee JA (1998) Leptin increases number of bone nodules in vitro. Bone 23(suppl 5):S212

    Google Scholar 

  81. Maor G, Rochwerger M, Segev Y, Phillip M (2002) Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 17:1034–1043

    PubMed  CAS  Google Scholar 

  82. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209

    PubMed  CAS  Google Scholar 

  83. Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142:3546–3553

    PubMed  CAS  Google Scholar 

  84. Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev, Genet 3:589–600

    CAS  Google Scholar 

  85. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen JH, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 100:197–207

    PubMed  CAS  Google Scholar 

  86. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang XL, Liu XY, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    PubMed  CAS  Google Scholar 

  87. Takeda S, Elefteriou F, Levasseur R, Liu XY, Zhao LP, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    PubMed  CAS  Google Scholar 

  88. Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, Bauer DC (2005) Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Mineral Res 20:613–618

    CAS  Google Scholar 

  89. Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, Davidson JS, Grey AB (2005) Effects of a beta-blocker on bone turnover in normal postmenopausal women: A randomized controlled trial. J Clin Endocrinol Metab 90:5212–5216

    PubMed  CAS  Google Scholar 

  90. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    PubMed  CAS  Google Scholar 

  91. Iwaniec UT, Boghossian S, Dube MG, Torto R, Arzaga RR, Wronski TJ, Kalra SP (2005) Effects of central leptin gene therapy on weight reduction and cancellous bone mass in female rats. J Bone Mineral Res 20(suppl 1):s13–s14

    Google Scholar 

  92. Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP (2005) Central leptin differentially modulates ultradian secretory patterns of insulin, leptin and ghrelin independent of effects on food intake and body weight. Peptides 26:2559–2566

    PubMed  CAS  Google Scholar 

  93. Morroni M, De Matteis R, Palumbo C, Ferretti M, Villa I, Rubinacci A, Cinti S, Marotti G (2004) In vivo leptin expression in cartilage and bone cells of growing rats and adult humans. J Anat 205:291–296

    PubMed  CAS  Google Scholar 

  94. Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383

    PubMed  CAS  Google Scholar 

  95. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Baile CA (2005) Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Mineral Res 20:994–1001

    CAS  Google Scholar 

  96. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, Ogawa Y, Liu X, Ware SM, Craigen WJ, Robert JJ, Vinson C, Nakao K, Capeau J, Karsenty G (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci U S A 101:3258–3263

    PubMed  CAS  Google Scholar 

  97. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341:879–884

    PubMed  CAS  Google Scholar 

  98. Martin A, David V, Malaval L, Lafage-Proust M, Vico L, Thomas T (2007) Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 148:3419–3425

    PubMed  CAS  Google Scholar 

  99. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351:987–997

    PubMed  CAS  Google Scholar 

  100. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161

    PubMed  CAS  Google Scholar 

  101. Prouteau S, Berthamou L, Courteix D (2006) Relationships between serum leptin and bone markers during stable weight, weight reduction and weight regain in male and female judoists. Eur J Endocrinology 154:389–395

    CAS  Google Scholar 

  102. Bajoria R, Sooranna SR, Chatterjee R (2007) Leptin and bone turnover in monochorionic twins complicated by twin-twin transfusion syndrome. Osteoporos Int 18:193–200

    PubMed  CAS  Google Scholar 

  103. Roux C, Arabi A, Porcher R, Garnero P (2003) Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone 33:847–852

    PubMed  CAS  Google Scholar 

  104. Weiss LA, Barrett-Connor E, von Muhlen D, Clark P (2006) Leptin predicts BMD and bone resorption in older women but not older men: The Rancho Bernardo study. J Bone Mineral Res 21:758–764

    CAS  Google Scholar 

  105. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    PubMed  CAS  Google Scholar 

  106. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935

    PubMed  CAS  Google Scholar 

  107. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, Reseland JE (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35:842–849

    PubMed  CAS  Google Scholar 

  108. Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Mineral Res 21:1648–1656

    CAS  Google Scholar 

  109. Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJS, Aimin Xu A (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280:18341–18347

    PubMed  CAS  Google Scholar 

  110. Huang KC, Cheng WC, Yen RF, Tsai KS, Tai TY, Yang WS (2004) Lack of independent relationship between plasma adiponectin, leptin levels and bone density in nondiabetic female adolescents. Clin Endocrinol 61:204–208

    CAS  Google Scholar 

  111. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33:646–651

    PubMed  CAS  Google Scholar 

  112. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD ((in press)) Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab

  113. Cornish J, Callon KE, Watson M, Lin J-m, Reid IR (2006) Resistin, an adipocytokine, stimulates osteoblast and osteoclast proliferation. Bone 38(suppl 1):s9

    Google Scholar 

  114. Thommesein L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, Lyngstadaas SP, Reseland JE, Syversen U (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99:824–834

    Google Scholar 

  115. Carruth BR, Skinner JD (2001) The role of dietary calcium and other nutrients in moderating body fat in preschool children. Int J Obes Relat Metab Disord 25:559–566

    PubMed  CAS  Google Scholar 

  116. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC (2000) Regulation of adiposity by dietary calcium. FASEB J 14:1132–1138

    PubMed  CAS  Google Scholar 

  117. Lovejoy JC, Champagne CM, Smith SR, de Jonge L, Xie H (2001) Ethnic differences in dietary intakes, physical activity, and energy expenditure in middle-aged, premenopausal women: the Healthy Transitions Study. Am J Clin Nutr 74:90–95

    PubMed  CAS  Google Scholar 

  118. Pereira MA, Jacobs DR, Jr., Van Horn L, Slattery ML, Kartashov AI, Ludwig DS (2002) Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA, J Am Med Assoc 287:2081–2089

    Google Scholar 

  119. Buchowski MS, Semenya J, Johnson AO (2002) Dietary calcium intake in lactose maldigesting intolerant and tolerant African-American women. J Am Coll Nutr 21:47–54

    PubMed  CAS  Google Scholar 

  120. Jacqmain M, Doucet E, Despres JP, Bouchard C, Tremblay A (2003) Calcium intake , body composition, and lipoprotein-lipid concentrations in adults. Am J Clin Nutr 77:1448–1452

    PubMed  CAS  Google Scholar 

  121. Skinner JD, Bounds W, Carruth BR, Ziegler P (2003) Longitudinal calcium intake is negatively related to children’s body fat indexes. J Am Diet Assoc 103:1626–1631

    PubMed  Google Scholar 

  122. Lin YC, Lyle RM, McCabe LD, McCabe GP, Weaver CM, Teegarden D (2000) Dairy calcium is related to changes in body composition during a two-year exercise intervention in young women. J Am Coll Nutr 19:754–760

    PubMed  CAS  Google Scholar 

  123. McCarron DA (1983) Calcium and magnesium nutrition in human hypertension. Ann Intern Med 98:800–805

    PubMed  CAS  Google Scholar 

  124. Davies KM, Heaney RP, Recker RR, Lappe JM, Barger-Lux MJ, Rafferty K, Hinders S (2000) Calcium intake and body weight. J Clin Endocrinol Metab 85:4635–4638

    PubMed  CAS  Google Scholar 

  125. Trowman R, Dumville JC, Hahn S, Torgerson DJ (2006) A systematic review of the effects of calcium supplementation on body weight. Br J Nutr 95:1033–1038

    PubMed  CAS  Google Scholar 

  126. Reid IR, Horne A, Mason B, Ames R, Bava U, Gamble GD (2005) Effects of calcium supplementation on body weight and blood pressure in normal older women: A randomized controlled trial. J Clin Endocrinol Metab 90:3824–3829

    PubMed  CAS  Google Scholar 

  127. Lorenzen JK, Molgaard C, Michaelsen KF, Astrup A (2006) Calcium supplementation for 1 y does not reduce body weight or fat mass in young girls. Am J Clin Nutr 83:18–23

    PubMed  CAS  Google Scholar 

  128. Rajpathak SN, Rimm EB, Rosner B, Willett WC, Hu FB (2006) Calcium and dairy intakes in relation to long-term weight gain in US men. Am J Clin Nutr 83:559–566

    PubMed  CAS  Google Scholar 

  129. Bolland MJ, Grey AB, Ames RW, Mason BH, Horne AM, Gamble GD, Reid IR (2006) Determinants of vitamin D status in older men living in a subtropical climate. Osteoporos Int 17:1742–1748

    PubMed  CAS  Google Scholar 

  130. Kong J, Li YC (2006) Molecular mechanism of 1,25-dihydroxyvitamin D-3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol: Endocrinol Metab 290:E916–E924

    CAS  Google Scholar 

  131. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR (2006) Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 38:317–321

    PubMed  CAS  Google Scholar 

  132. Bolland MJ, Grey AB, Gamble GD, Reid IR (2005) Association between primary hyperparathyroidism and increased body weight: A meta-analysis. J Clin Endocrinol Metab 90:1525–1530

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, I.R. Relationships between fat and bone. Osteoporos Int 19, 595–606 (2008). https://doi.org/10.1007/s00198-007-0492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0492-z

Keywords

Navigation