Skip to main content
Log in

Morphometric vertebral fractures of the lower thoracic and lumbar spine, physical function and quality of life in men

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The epidemiology and sequelae of morphometric vertebral fracture (MVF) are poorly documented. We found that MVFs of the lower thoracic and lumbar spine were associated with poor quality of life and impaired physical function in men. We recommend that morphometric X-ray absorptiometry be included in routine requests for bone densitometry.

Introduction

Vertebral fractures are sentinel events for osteoporosis. We aimed to compare quality of life and physical function in men with and without MVF.

Methods

Using morphometric X-ray absorptiometry (T10–L4), MVFs were identified in a random sample of men aged 20–93 years. Moderate and severe wedge, biconcave or compression deformities (>25% reduction in any vertebral height) were classified as MVFs.

Results

Of 1,147 men, MVFs were identified in 64. No MVFs were detected for men in their twenties. Prevalence was 1.5% for 30–39 years, 1.4% 40–49 years, 3.2% 50–59 years, 4.7% 60–69 years, 10.0% 70–79 years and 14.6% 80+ years. Among 555 men aged 60+ years, those with MVFs were twice as likely to have quality of life scores in the lowest tertile (age-adjusted OR = 2.35, 95%CI 1.24–4.45). MVFs were associated with lower mean age-adjusted physical activity scores [11.3 (95%CI 9.0–13.8) vs 14.0 (13.2–14.9), P = 0.04] and longer mean age-adjusted ‘Up-&-Go’ times [9.5 (8.9, 10.1) vs 8.9 (8.8, 9.1) s, P = 0.06].

Conclusion

Despite most men being unaware of their condition, MVFs were associated with poor quality of life and impaired physical function. We recommend that morphometric X-ray absorptiometry be included in routine requests for bone densitometry because detection of MVFs has important implications for osteoporosis management in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ebeling PR (2008) Clinical practice. Osteoporosis in men. N Engl J Med 358:1474–1482

    Article  PubMed  CAS  Google Scholar 

  2. Leidig G, Minne HW, Sauer P et al (1990) A study of complaints and their relation to vertebral destruction in patients with osteoporosis. Bone Miner 8:217–229

    Article  PubMed  CAS  Google Scholar 

  3. Ettinger B, Black DM, Nevitt MC et al (1992) Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 7:449–456

    PubMed  CAS  Google Scholar 

  4. Lyles KW, Gold DT, Shipp KM et al (1993) Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med 94:595–601

    Article  PubMed  CAS  Google Scholar 

  5. Huang C, Ross PD, Wasnich RD (1996) Vertebral fractures and other predictors of back pain among older women. J Bone Miner Res 11:1026–1032

    PubMed  CAS  Google Scholar 

  6. Burger H, Van Daele PL, Grashuis K et al (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157

    Article  PubMed  CAS  Google Scholar 

  7. Matthis C, Weber U, O’Neill TW, Raspe H (1998) Health impact associated with vertebral deformities: results from the European Vertebral Osteoporosis Study (EVOS). Osteoporos Int 8:364–372

    Article  PubMed  CAS  Google Scholar 

  8. Pasco JA, Sanders KM, Hoekstra FM et al (2005) The human cost of fracture. Osteoporos Int 16:2046–2052

    Article  PubMed  Google Scholar 

  9. Greendale GA, DeAmicis TA, Bucur A et al (2000) A prospective study of the effect of fracture on measured physical performance: results from the MacArthur Study—MAC. J Am Geriatr Soc 48:546–549

    PubMed  CAS  Google Scholar 

  10. Schlaich C, Minne HW, Bruckner T et al (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8:261–267

    Article  PubMed  CAS  Google Scholar 

  11. Cook DJ, Guyatt GH, Adachi JD et al (1993) Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum 36:750–756

    Article  PubMed  CAS  Google Scholar 

  12. Gold DT (2001) The nonskeletal consequences of osteoporotic fractures. Psychologic and social outcomes. Rheum Dis Clin North Am 27:255–262

    Article  PubMed  CAS  Google Scholar 

  13. Kanis JA, Johnell O, Oden A et al (2004) The risk and burden of vertebral fractures in Sweden. Osteoporos Int 15:20–26

    Article  PubMed  CAS  Google Scholar 

  14. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    PubMed  CAS  Google Scholar 

  15. Callaway CW, Chumlea WC et al (1988) Circumferences. In: Lohman TG, Roche AF, Martorell R (eds) Anthropometric standardization reference manual. Human Kinetics Books, Champaign, pp 39–54

    Google Scholar 

  16. Giles GG, Ireland PD (1996) Dietary questionnaire for epidemiological studies (Version 2). The Cancer Council Victoria, Melbourne

    Google Scholar 

  17. Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148

    PubMed  CAS  Google Scholar 

  18. Duncan PW, Weiner DK, Chandler J, Studenski S (1990) Functional reach: a new clinical measure of balance. J Gerontol 45:M192–M197

    PubMed  CAS  Google Scholar 

  19. Voorrips LE, Ravelli AC, Dongelmans PC et al (1991) A physical activity questionnaire for the elderly. Med Sci Sports Exerc 23:974–979

    PubMed  CAS  Google Scholar 

  20. Lydick E, Zimmerman SI, Yawn B et al (1997) Development and validation of a discriminative quality of life questionnaire for osteoporosis (the OPTQoL). J Bone Miner Res 12:456–463

    Article  PubMed  CAS  Google Scholar 

  21. O’Neill TW, Felsenberg D, Varlow J et al (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    PubMed  Google Scholar 

  22. Ismail AA, Cooper C, Felsenberg D et al (1999) Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int 9:206–213

    Article  PubMed  CAS  Google Scholar 

  23. Leidig-Bruckner G, Limberg B, Felsenberg D et al (2000) Sex difference in the validity of vertebral deformities as an index of prevalent vertebral osteoporotic fractures: a population survey of older men and women. Osteoporos Int 11:102–119

    Article  PubMed  CAS  Google Scholar 

  24. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728

    Article  PubMed  CAS  Google Scholar 

  25. Mann T, Oviatt SK, Wilson D et al (1992) Vertebral deformity in men. J Bone Miner Res 7:1259–1265

    PubMed  CAS  Google Scholar 

  26. Vokes TJ, Dixon LB, Favus MJ (2003) Clinical utility of dual-energy vertebral assessment (DVA). Osteoporos Int 14:871–878

    Article  PubMed  Google Scholar 

  27. Ferrar L, Jiang G, Armbrecht G et al (2007) Is short vertebral height always an osteoporotic fracture? The Osteoporosis and Ultrasound Study (OPUS). Bone 41:5–12

    Article  PubMed  CAS  Google Scholar 

  28. McKenzie L, Sillence D (1992) Familial Scheuermann disease: a genetic and linkage study. J Med Genet 29:41–45

    Article  PubMed  CAS  Google Scholar 

  29. Kotowicz MA, Melton LJ 3rd, Cooper C et al (1994) Risk of hip fracture in women with vertebral fracture. J Bone Miner Res 9:559–605

    Article  Google Scholar 

  30. Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  31. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  PubMed  CAS  Google Scholar 

  32. Oleksik A, Ott SM, Vedi S et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  PubMed  CAS  Google Scholar 

  33. Qiu S, Rao DS, Palnitkar S, Parfitt AM (2003) Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res 18:1657–1663

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Health and Medical Research Council (NHMRC), the University of Melbourne, the Geelong Region Medical Research Foundation and the Ronald Geoffrey Arnott Foundation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Pasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasco, J.A., Henry, M.J., Korn, S. et al. Morphometric vertebral fractures of the lower thoracic and lumbar spine, physical function and quality of life in men. Osteoporos Int 20, 787–792 (2009). https://doi.org/10.1007/s00198-008-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0744-6

Keywords

Navigation