Skip to main content
Log in

Wnt pathway genes in osteoporosis and osteoarthritis: differential expression and genetic association study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In comparison with hip fractures, increased expression of genes in the Wnt pathway and increased Wnt activity were found in bone samples and osteoblast cultures from patients with osteoarthritis, suggesting the involvement of this pathway in subchondral bone changes. No consistent differences were found in the genetic association study.

Introduction

This study aims to explore the allelic variations and expression of Wnt pathway genes in patients with osteoporosis and osteoarthritis.

Methods

The expression of 86 genes was studied in bone samples and osteoblast primary cultures from patients with hip fractures and hip or knee osteoarthritis. The Wnt-related activity was assessed by measuring AXIN2 and in transfection experiments. Fifty-five SNPs of the LRP5, LRP6, FRZB, and SOST genes were analyzed in 1,128 patients.

Results

Several genes were differentially expressed in bone tissue, with the lowest values usually found in hip fracture and the highest in knee osteoarthritis. Overall, seven genes were consistently upregulated both in tissue samples and in cell cultures from patients with knee osteoarthritis (BCL9, FZD5, DVL2, EP300, FRZB, LRP5, and TCF7L1). The increased expression of AXIN2 and experiments of transient transfection of osteoblasts with the TOP-Flash construct confirmed the activation of Wnt signaling. Three SNPs of the LRP5 gene and one in the LRP6 gene showed marginally significant differences in allelic frequencies across the patient groups, but they did not resist multiple-test adjustment.

Conclusions

Genes in the Wnt pathway are upregulated in the osteoarthritic bone, suggesting their involvement not only in cartilage distortion but also in subchondral bone changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanchez C, Deberg MA, Bellahcene A et al (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455

    Article  CAS  PubMed  Google Scholar 

  2. Dequeker J, Aerssens J, Luyten FP (2003) Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 15:426–439

    PubMed  Google Scholar 

  3. Little RD, Carulli JP, Del Mastro RG et al (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19

    Article  CAS  PubMed  Google Scholar 

  4. Goldring SR, Goldring MB (2007) Eating bone or adding it: the Wnt pathway decides. Nat Med 13:133–134

    Article  CAS  PubMed  Google Scholar 

  5. Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5:73–80

    Article  PubMed  Google Scholar 

  6. Nakamura Y, Nawata M, Wakitani S (2005) Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am J Pathol 167:97–105

    CAS  PubMed  Google Scholar 

  7. Corr M, Lane NE (2007) FRZB: a bone and joint connection. Arthritis Rheum 56:3881–3883

    Article  CAS  PubMed  Google Scholar 

  8. Yuasa T, Otani T, Koike T et al (2008) Wnt/beta-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 88:264–274

    Article  CAS  PubMed  Google Scholar 

  9. Imai K, Morikawa M, D'Armiento J et al (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem Biophys Res Commun 345:1615–1620

    Article  CAS  PubMed  Google Scholar 

  10. Lories RJ, Peeters J, Bakker A et al (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56:4095–4103

    Article  CAS  PubMed  Google Scholar 

  11. Lane NE, Lian K, Nevitt MC et al (2006) Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum 54:1246–1254

    Article  CAS  PubMed  Google Scholar 

  12. Urano T, Narusawa K, Shiraki M et al (2007) Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women. J Bone Miner Metab 25:253–258

    Article  CAS  PubMed  Google Scholar 

  13. Min JL, Meulenbelt I, Riyazi N et al (2005) Association of the Frizzled-related protein gene with symptomatic osteoarthritis at multiple sites. Arthritis Rheum 52:1077–1080

    Article  CAS  PubMed  Google Scholar 

  14. Loughlin J, Dowling B, Chapman K et al (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 101:9757–9762

    Article  CAS  PubMed  Google Scholar 

  15. Smith AJ, Gidley J, Sandy JR et al (2005) Haplotypes of the low-density lipoprotein receptor-related protein 5 (LRP5) gene: are they a risk factor in osteoarthritis? Osteoarthritis Cartilage 13:608–613

    Article  CAS  PubMed  Google Scholar 

  16. Lories RJ, Boonen S, Peeters J et al (2006) Evidence for a differential association of the Arg200Trp single-nucleotide polymorphism in FRZB with hip osteoarthritis and osteoporosis. Rheumatology (Oxford) 45:113–114

    Article  CAS  Google Scholar 

  17. Jonsson KB, Frost A, Nilsson O et al (1999) Three isolation techniques for primary culture of human osteoblast-like cells: a comparison. Acta Orthop Scand 70:365–373

    Article  CAS  PubMed  Google Scholar 

  18. Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  19. Conde L, Vaquerizas JM, Dopazo H et al (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34:W621–W625

    Article  CAS  PubMed  Google Scholar 

  20. Trivedi P, Edwards JW, Wang J et al (2005) HDBStat!: a platform-independent software suite for statistical analysis of high dimensional biology data. BMC Bioinformatics 6:86

    Article  PubMed  CAS  Google Scholar 

  21. Benjamini Y, Drai D, Elmer G et al (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  22. Benjamini Y, Yekutieli D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171:783–790

    Article  CAS  PubMed  Google Scholar 

  23. Hernandez JL, Garcés CM, Sumillera M et al (2008) Aromatase expression in osteoarthritic and osteoporotic bone. Arthritis Rheum 58:1696–1700

    Article  CAS  PubMed  Google Scholar 

  24. Faul F, Erdfelder E, Lang AG et al (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    PubMed  Google Scholar 

  25. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  CAS  PubMed  Google Scholar 

  26. Luyten FP, Tylzanowski P, Lories RJ (2009) Wnt signaling and osteoarthritis. Bone 44:522–527

    Article  CAS  PubMed  Google Scholar 

  27. Hopwood B, Tsykin A, Findlay DM et al (2007) Microarray gene expression profiling of human osteoarthritic bone suggests altered bone remodelling, WNT and TGF beta/BMP signalling. Arthritis Res Ther 9:R100

    Article  PubMed  CAS  Google Scholar 

  28. Lane NE, Nevitt MC, Lui LY et al (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56:3319–3325

    Article  CAS  PubMed  Google Scholar 

  29. Blom AB, Brockbank SM, van Lent PL et al (2009) Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum 60:501–512

    Article  CAS  PubMed  Google Scholar 

  30. Kawaguchi H (2009) Regulation of osteoarthritis development by Wnt-beta-catenin signaling through the endochondral ossification process. J Bone Miner Res 24:8–11

    Article  CAS  PubMed  Google Scholar 

  31. Zhu M, Tang D, Wu Q et al (2009) Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 24:12–21

    Article  CAS  PubMed  Google Scholar 

  32. Leung JY, Kolligs FT, Wu R et al (2002) Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277:21657–21665

    Article  CAS  PubMed  Google Scholar 

  33. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  CAS  PubMed  Google Scholar 

  34. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728

    Article  CAS  PubMed  Google Scholar 

  35. Bergink AP, Uitterlinden AG, van Leeuwen JP et al (2005) Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study. Bone 37:446–456

    Article  CAS  PubMed  Google Scholar 

  36. Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  CAS  PubMed  Google Scholar 

  37. van Amerongen R, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22:678–689

    Article  PubMed  CAS  Google Scholar 

  38. Wang HY, Liu T, Malbon CC (2006) Structure-function analysis of Frizzleds. Cell Signal 18:934–941

    Article  CAS  PubMed  Google Scholar 

  39. Carmon KS, Loose DS (2008) Wnt7a interaction with Fzd5 and detection of signaling activation using a split eGFP. Biochem Biophys Res Commun 368:285–291

    Article  CAS  PubMed  Google Scholar 

  40. Cho SW, Her SJ, Sun HJ et al (2008) Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochem Biophys Res Commun 367:399–405

    Article  CAS  PubMed  Google Scholar 

  41. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  CAS  PubMed  Google Scholar 

  42. Lee YN, Gao Y, Wang HY (2008) Differential mediation of the Wnt canonical pathway by mammalian Dishevelleds-1, -2, and -3. Cell Signal 20:443–452

    Article  CAS  PubMed  Google Scholar 

  43. Hoppler S, Kavanagh CL (2007) Wnt signalling: variety at the core. J Cell Sci 120:385–393

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Sutter C, Parker DS et al (2007) CBP/p300 are bimodal regulators of Wnt signaling. EMBO J 26:2284–2294

    Article  CAS  PubMed  Google Scholar 

  45. Dell'accio F, De Bari C, Eltawil NM et al (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58:1410–1421

    Article  PubMed  CAS  Google Scholar 

  46. Tuynman JB, Vermeulen L, Boon EM et al (2008) Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res 68:1213–1220

    Article  CAS  PubMed  Google Scholar 

  47. Bos CL, Kodach LL, van den Brink GR et al (2006) Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene 25:6447–6456

    Article  CAS  PubMed  Google Scholar 

  48. Kerkhof JM, Uitterlinden AG, Valdes AM et al (2008) Radiographic osteoarthritis at three joint sites and FRZB, LRP5, and LRP6 polymorphisms in two population-based cohorts. Osteoarthritis Cartilage 16:1141–1149

    Article  CAS  PubMed  Google Scholar 

  49. Roach HI, Yamada N, Cheung KS et al (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52:3110–3124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the Santiago de Compostela Genotyping Center (Centro Español de Genotipado, CEGEN), and particularly to María Torres, for their help in the genotyping study. We thank Armando Guerra for his help with DNA analysis.

Funding

Supported by Fondo de Investigaciones Sanitarias-FIS (grant 06/0034 and a research contract to C.S.)

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Riancho.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, J., Zarrabeitia, M.T., Prieto, J.R. et al. Wnt pathway genes in osteoporosis and osteoarthritis: differential expression and genetic association study. Osteoporos Int 21, 109–118 (2010). https://doi.org/10.1007/s00198-009-0931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0931-0

Keywords

Navigation