Skip to main content

Advertisement

Log in

Women with hip fracture experience greater loss of geometric strength in the contralateral hip during the year following fracture than age-matched controls

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study examined femur geometry underlying previously observed decline in BMD of the contralateral hip in older women the year following hip fracture compared to non-fractured controls. Compared to controls, these women experienced a greater decline in indices of bone structural strength, potentially increasing the risk of a second fracture.

Introduction

This study examined the femur geometry underlying previously observed decline in BMD of the contralateral hip in the year following hip fracture compared to non-fractured controls.

Methods

Geometry was derived from dual-energy X-ray absorptiometry scan images using hip structural analysis from women in the third cohort of the Baltimore Hip Studies and from women in the Study of Osteoporotic Fractures. Change in BMD, section modulus (SM), cross-sectional area (CSA), outer diameter, and buckling ratio (BR) at the narrow neck (NN), intertrochanteric (IT), and shaft (S) regions of the hip were compared.

Results

Wider bones and reduced CSA underlie the significantly lower BMD observed in women who fractured their hip resulting in more fragile bones expressed by a lower SM and higher BR. Compared to controls, these women experienced a significantly greater decline in CSA (−2.3% vs. −0.2%NN, −3.2% vs. −0.5%IT), SM (−2.1% vs. −0.2%NN, −3.9% vs. −0.6%IT), and BMD (−3.0% vs. −0.8%NN, −3.3% vs. −0.6%IT, −2.3% vs. −0.2%S) and a greater increase in BR (5.0% vs. 2.1%NN, 6.0% vs. 1.3%IT, 4.4% vs. 1.0%S) and shaft outer diameter (0.9% vs. 0.1%).

Conclusion

The contralateral femur continued to weaken during the year following fracture, potentially increasing the risk of a second fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vestergaard P, Rejnmark L, Mosekilde L (2007) Has mortality after a hip fracture increased? J Am Geriatr Soc 55:1720–1726

    Article  PubMed  Google Scholar 

  2. Magaziner J, Lydick E, Hawkes W, Fox KM, Zimmerman SI, Epstein RS, Hebel JR (1997) Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health 87:1630–1636

    Article  CAS  PubMed  Google Scholar 

  3. Penrod JD, Litke A, Hawkes WG, Magaziner J, Koval KJ, Doucette JT, Silberzweig SB, Siu AL (2007) Heterogeneity in hip fracture patients: age, functional status, and comorbidity. J Am Geriatr Soc 55:407–413

    Article  PubMed  Google Scholar 

  4. Fredman L, Magaziner J, Hawkes W, Hebel JR, Fried LP, Kasper J, Guralnik J (2005) Female hip fracture patients had poorer performance-based functioning than community-dwelling peers over 2-year follow-up period. J Clin Epidemiol 58:1289–1298

    Article  PubMed  Google Scholar 

  5. Magaziner J, Fredman L, Hawkes W, Hebel JR, Zimmerman S, Orwig DL, Wehren L (2003) Changes in functional status attributable to hip fracture: a comparison of hip fracture patients to community-dwelling aged. Am J Epidemiol 157:1023–1031

    Article  PubMed  Google Scholar 

  6. Magaziner J, Hawkes W, Hebel JR, Zimmerman SI, Fox KM, Dolan M, Felsenthal G, Kenzora J (2000) Recovery from hip fracture in eight areas of function. J Gerontol A Biol Sci Med Sci 55:M498–M507

    CAS  PubMed  Google Scholar 

  7. Chapurlat RD, Bauer DC, Nevitt M, Stone K, Cummings SR (2003) Incidence and risk factors for a second hip fracture in elderly women. The study of osteoporotic fractures. Osteoporos Int 14:130–136

    CAS  PubMed  Google Scholar 

  8. Melton LJ 3rd, Kearns AE, Atkinson EJ, Bolander ME, Achenbach SJ, Huddleston JM, Therneau TM, Leibson CL (2008) Secular trends in hip fracture incidence and recurrence. Osteoporos Int . doi:10.1007/s00198-008-0742-8

    Google Scholar 

  9. Nymark T, Lauritsen JM, Ovesen O, Rock ND, Jeune B (2006) Short time-frame from first to second hip fracture in the Funen County Hip Fracture Study. Osteoporos Int 17:1353–1357. doi:10.1007/s00198-006-0125-y

    Article  CAS  PubMed  Google Scholar 

  10. Berry SD, Samelson EJ, Hannan MT, McLean RR, Lu M, Cupples LA, Shaffer ML, Beiser AL, Kelly-Hayes M, Kiel DP (2007) Second hip fracture in older men and women: the Framingham Study. Arch Intern Med 167:1971–1976

    Article  PubMed  Google Scholar 

  11. Lonnroos E, Kautiainen H, Karppi P, Hartikainen S, Kiviranta I, Sulkava R (2007) Incidence of second hip fractures. A population-based study. Osteoporos Int 18:1279–1285. doi:10.1007/s00198-007-0375-3

    Article  CAS  PubMed  Google Scholar 

  12. Magaziner J, Wehren L, Hawkes WG, Orwig D, Hebel JR, Fredman L, Stone K, Zimmerman S, Hochberg MC (2006) Women with hip fracture have a greater rate of decline in bone mineral density than expected: another significant consequence of a common geriatric problem. Osteoporos Int 17:971–977

    Article  CAS  PubMed  Google Scholar 

  13. Hayes W, Bouxsein M (1997) Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. In: Mow V, Hayes W (eds) Basic orthopaedic biomechanics. Lippincott-Raven, Philadelphia, pp 66–111

    Google Scholar 

  14. Fox KM, Magaziner J, Hawkes WG, Yu-Yahiro J, Hebel JR, Zimmerman SI, Holder L, Michael R (2000) Loss of bone density and lean body mass after hip fracture. Osteoporos Int 11:31–35

    Article  CAS  PubMed  Google Scholar 

  15. Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, Mascioli SR, Scott JC, Seeley DG, Steiger P (1990) Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA 263:665–668

    Article  CAS  PubMed  Google Scholar 

  16. Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 17:195–201

    Article  CAS  PubMed  Google Scholar 

  17. Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 2:49–55

    Article  Google Scholar 

  18. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res . doi:10.1359/jbmr.080802

    PubMed  Google Scholar 

  19. Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1781–1790

    Article  PubMed  Google Scholar 

  20. Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37:112–121

    Article  PubMed  Google Scholar 

  21. Mikkola T, Sipila S, Portegijs E, Kallinen M, Alen M, Kiviranta I, Pekkonen M, Heinonen A (2007) Impaired geometric properties of tibia in older women with hip fracture history. Osteoporos Int 18:1083–1090

    Article  CAS  PubMed  Google Scholar 

  22. Akesson K, Kakonen SM, Josefsson PO, Karlsson MK, Obrant KJ, Pettersson K (2005) Fracture-induced changes in bone turnover: a potential confounder in the use of biochemical markers in osteoporosis. J Bone Miner Metab 23:30–35

    Article  CAS  PubMed  Google Scholar 

  23. Obrant KJ, Ivaska KK, Gerdhem P, Alatalo SL, Pettersson K, Vaananen HK (2005) Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone 36:786–792

    Article  CAS  PubMed  Google Scholar 

  24. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22:1155–1164

    Article  CAS  PubMed  Google Scholar 

  25. Yu-Yahiro JA, Michael RH, Dubin NH, Fox KM, Sachs M, Hawkes WG, Hebel JR, Zimmerman SI, Shapiro J, Magaziner J (2001) Serum and urine markers of bone metabolism during the year after hip fracture. J Am Geriatr Soc 49:877–883

    Article  CAS  PubMed  Google Scholar 

  26. Dirschl DR, Henderson RC, Oakley WC (1997) Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study. Bone 21:79–82

    Article  CAS  PubMed  Google Scholar 

  27. Kaptoge S, Dalzell N, Jakes RW, Wareham N, Day NE, Khaw KT, Beck TJ, Loveridge N, Reeve J (2003) Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD. Osteoporos Int 14:941–949

    Article  CAS  PubMed  Google Scholar 

  28. Kaptoge S, Jakes RW, Dalzell N, Wareham N, Khaw KT, Loveridge N, Beck TJ, Reeve J (2007) Effects of physical activity on evolution of proximal femur structure in a younger elderly population. Bone 40:506–515

    Article  CAS  PubMed  Google Scholar 

  29. Uusi-Rasi K, Semanick LM, Zanchetta JR, Bogado CE, Eriksen EF, Sato M, Beck TJ (2005) Effects of teriparatide [rhPTH (1–34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 36:948–958

    Article  CAS  PubMed  Google Scholar 

  30. Uusi-Rasi K, Beck TJ, Semanick LM, Daphtary MM, Crans GG, Desaiah D, Harper KD (2006) Structural effects of raloxifene on the proximal femur: results from the multiple outcomes of raloxifene evaluation trial. Osteoporos Int 17:575–586

    Article  CAS  PubMed  Google Scholar 

  31. Wehren LE, Hawkes WG, Hebel JR, Orwig DL, Magaziner J (2005) Bone mineral density, soft tissue body composition, strength, and functioning after hip fracture. J Gerontol A Biol Sci Med Sci 60:80–84

    PubMed  Google Scholar 

  32. Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309:691–695

    CAS  PubMed  Google Scholar 

  33. Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, Pols HA (1998) Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol 147:871–879

    CAS  PubMed  Google Scholar 

  34. Dennison E, Eastell R, Fall CH, Kellingray S, Wood PJ, Cooper C (1999) Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int 10:384–391

    Article  CAS  PubMed  Google Scholar 

  35. Melton LJ 3rd, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (2000) Determinants of bone loss from the femoral neck in women of different ages. J Bone Miner Res 15:24–31

    Article  PubMed  Google Scholar 

  36. Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, Nevitt MC, Fox KM, Cummings SR (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10:1778–1787

    Article  CAS  PubMed  Google Scholar 

  37. Karlsson M, Nilsson JA, Sernbo I, Redlund-Johnell I, Johnell O, Obrant KJ (1996) Changes of bone mineral mass and soft tissue composition after hip fracture. Bone 18:19–22

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The lead author has no conflicts of interest to report.

The following co-authors report disclosures for:

Consultancies: J. Magaziner—Merck, Novartis, Amgen; M.C. Hochberg—Amgen, Merck, Novartis, Roche Pharmaceutical Co., Wyeth Pharmaceuticals, and Eli Lilly Inc. In neither case do the consultancies relate to the research presented in this paper.

Licensing arrangement: T.J. Beck—the HSA method has been licensed to Hologic Inc. by the Johns Hopkins University, employer of T.J. Beck.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to L. Reider.

Additional information

Funding Sources

The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: AG05407, AR35582, AG05394, AR35584, AR35583, R01 AG005407, R01 AG027576-22, 2 R01 AG005394-22A1, and 2 R01 AG027574-22A1, AG05407, AR35582, AG05394, AR35584, AR35583, AG026720.

The Baltimore Hip Studies are supported by NIH grant numbers: R37 AG009901; R01 AG018668; P30 AG028747.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reider, L., Beck, T.J., Hochberg, M.C. et al. Women with hip fracture experience greater loss of geometric strength in the contralateral hip during the year following fracture than age-matched controls. Osteoporos Int 21, 741–750 (2010). https://doi.org/10.1007/s00198-009-1000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1000-4

Keywords

Navigation