Skip to main content
Log in

The efficacy of calcitriol therapy in the management of bone loss and fractures: a qualitative review

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis, a skeletal disorder characterized by a reduction in bone strength, increases fracture risk. Primary osteoporosis is usually a result of reduced bone mineral density as a consequence of natural aging. Secondary osteoporosis is usually a result of a disease, such as cystic fibrosis, or medical treatment, such as corticosteroids or cancer treatment.

Introduction

Currently, ten million Americans are osteoporotic and an additional 34 million have the precursor condition, osteopenia. Osteoporosis leads to 1.5 million fractures and 500,000 hospitalizations annually. Osteoporosis-related fractures increase mortality and reduce quality of life. Calcitriol, the active form of vitamin D, regulates intestinal calcium absorption, among other actions. During the past four decades, many clinical trials investigating the effect of calcitriol on bone loss have been performed.

Methods

We conducted a systematic qualitative review of clinical trials that assessed calcitriol for the treatment of osteoporosis and bone loss. In these clinical trials, calcitriol was used as a monotherapy and in combination with other therapeutic bone agents.

Results and conclusion

Studies using calcitriol monotherapy, although not conclusive, found that calcitriol slowed the rate of bone loss in a variety of populations. Calcitriol in combination with other therapeutic bone agents was shown to have additional bone-preserving effects when compared to the use of therapeutic bone agents alone. A common side-effect of calcitriol therapy was hypercalcemia and hypercalciuria, but the degree of hypercalcemia was mild. Recent research found that intermittent dosing can reduce hypercalcemia rates. Calcitriol, alone or in combination with other agents, should be considered for the therapy of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United States. Public Health Service. Office of the Surgeon General. (2004) Bone health and osteoporosis a report of the Surgeon General. In. U.S. Dept. of Health and Human Services, Public Health Service, Rockville, MD, Washington, D.C.

  2. Liu H, Paige NM, Goldzweig CL, Wong E, Zhou A, Suttorp MJ, Munjas B, Orwoll E, Shekelle P (2008) Screening for osteoporosis in men: a systematic review for an American College of Physicians guideline. Ann Intern Med 148:685–701

    PubMed  Google Scholar 

  3. Looker AC, Bauer DC, Chesnut CH 3rd, Gundberg CM, Hochberg MC, Klee G, Kleerekoper M, Watts NB, Bell NH (2000) Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporos Int 11:467–480

    CAS  PubMed  Google Scholar 

  4. Miller PD, Baran DT, Bilezikian JP, Greenspan SL, Lindsay R, Riggs BL, Watts NB (1999) Practical clinical application of biochemical markers of bone turnover: consensus of an expert panel. J Clin Densitom 2:323–342

    CAS  PubMed  Google Scholar 

  5. Garnero P, Delmas PD (1993) Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease. J Clin Endocrinol Metab 77:1046–1053

    CAS  PubMed  Google Scholar 

  6. Seeman E (2003) Invited review: pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151

    PubMed  Google Scholar 

  7. Dennison E, Mohamed MA, Cooper C (2006) Epidemiology of osteoporosis. Rheum Dis Clin North Am 32:617–629

    PubMed  Google Scholar 

  8. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    CAS  PubMed  Google Scholar 

  9. Stein E, Shane E (2003) Secondary osteoporosis. Endocrinol Metab Clin North Am 32:115–134 vii

    PubMed  Google Scholar 

  10. Saag KG (2003) Glucocorticoid-induced osteoporosis. Endocrinol Metab Clin North Am 32:135–157 vii

    CAS  PubMed  Google Scholar 

  11. van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13:777–787

    PubMed  Google Scholar 

  12. Riggs BL, Khosla S, Melton LJ 3rd (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    CAS  PubMed  Google Scholar 

  13. Cancer survivorship—United States, 1971–2001. MMWR Morb Mortal Wkly Rep (2004) 53:526–529

  14. Demark-Wahnefried W, Aziz NM, Rowland JH, Pinto BM (2005) Riding the crest of the teachable moment: promoting long-term health after the diagnosis of cancer. J Clin Oncol 23: 5814–5830

    PubMed  Google Scholar 

  15. Ganz PA (2005) A teachable moment for oncologists: cancer survivors, 10 million strong and growing! J Clin Oncol 23:5458–5460

    PubMed  Google Scholar 

  16. Greep NC, Giuliano AE, Hansen NM, Taketani T, Wang HJ, Singer FR (2003) The effects of adjuvant chemotherapy on bone density in postmenopausal women with early breast cancer. Am J Med 114:653–659

    PubMed  Google Scholar 

  17. Pfeilschifter J, Diel IJ (2000) Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol 18:1570–1593

    CAS  PubMed  Google Scholar 

  18. Mittan D, Lee S, Miller E, Perez RC, Basler JW, Bruder JM (2002) Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab 87:3656–3661

    CAS  PubMed  Google Scholar 

  19. Shapiro CL, Manola J, Leboff M (2001) Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19:3306–3311

    CAS  PubMed  Google Scholar 

  20. Jemal A, Ward E, Thun MJ (2007) Recent trends in breast cancer incidence rates by age and tumor characteristics among U.S. women. Breast Cancer Res 9:R28

    PubMed  Google Scholar 

  21. Roach M 3rd (1999) Current status of androgen suppression and radiotherapy for patients with prostate cancer. J Steroid Biochem Mol Biol 69:239–245

    CAS  PubMed  Google Scholar 

  22. Berruti A, Dogliotti L, Terrone C, Cerutti S, Isaia G, Tarabuzzi R, Reimondo G, Mari M, Ardissone P, De Luca S, Fasolis G, Fontana D, Rossetti SR, Angeli A (2002) Changes in bone mineral density, lean body mass and fat content as measured by dual energy X-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J Urol 167:2361–2367 discussion 2367

    PubMed  Google Scholar 

  23. Coleman RE, Banks LM, Girgis SI, Kilburn LS, Vrdoljak E, Fox J, Cawthorn SJ, Patel A, Snowdon CF, Hall E, Bliss JM, Coombes RC (2007) Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol 8:119–127

    CAS  PubMed  Google Scholar 

  24. Oefelein MG, Ricchuiti V, Conrad W, Seftel A, Bodner D, Goldman H, Resnick M (2001) Skeletal fracture associated with androgen suppression induced osteoporosis: the clinical incidence and risk factors for patients with prostate cancer. J Urol 166:1724–1728

    CAS  PubMed  Google Scholar 

  25. Andersen SJ (2007) Osteoporosis in the older woman. Clin Obstet Gynecol 50:752–766

    PubMed  Google Scholar 

  26. Gass M, Dawson-Hughes B (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–S11

    PubMed  Google Scholar 

  27. Riggs BL, Melton LJ 3rd (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505S–511S

    CAS  PubMed  Google Scholar 

  28. Ray NF, Chan JK, Thamer M, Melton LJ 3rd (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    CAS  PubMed  Google Scholar 

  29. Richmond J, Aharonoff GB, Zuckerman JD, Koval KJ (2003) Mortality risk after hip fracture. J Orthop Trauma 17:53–56

    PubMed  Google Scholar 

  30. Melton LJ 3rd (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    PubMed  Google Scholar 

  31. Chrischilles EA, Butler CD, Davis CS, Wallace RB (1991) A model of lifetime osteoporosis impact. Arch Intern Med 151:2026–2032

    CAS  PubMed  Google Scholar 

  32. Orwoll ES (1999) Osteoporosis in men: the effects of gender on skeletal health. Academic, San Diego

    Google Scholar 

  33. United States. Congress. Office of Technology Assessment (1994) Hip fracture outcomes in people age fifty and over. U.S. G.P.O., Washington, D.C, The Office

    Google Scholar 

  34. Ross PD (1997) Clinical consequences of vertebral fractures. Am J Med 103:30S–42S discussion 42 S-43 S

    CAS  PubMed  Google Scholar 

  35. Magaziner J, Hawkes W, Hebel JR, Zimmerman SI, Fox KM, Dolan M, Felsenthal G, Kenzora J (2000) Recovery from hip fracture in eight areas of function. J Gerontol 55:M498–M507

    CAS  Google Scholar 

  36. Tosteson AN, Hammond CS (2002) Quality-of-life assessment in osteoporosis: health-status and preference-based measures. PharmacoEcon 20:289–303

    Google Scholar 

  37. Papaioannou A, Watts NB, Kendler DL, Yuen CK, Adachi JD, Ferko N (2002) Diagnosis and management of vertebral fractures in elderly adults. Am J Med 113:220–228

    PubMed  Google Scholar 

  38. O'Donnell S, Moher D, Thomas K, Hanley DA, Cranney A (2008) Systematic review of the benefits and harms of calcitriol and alfacalcidol for fractures and falls. J Bone Miner Metab 26:531–542

    PubMed  Google Scholar 

  39. Lau KH, Baylink DJ (1999) Vitamin D therapy of osteoporosis: plain vitamin D therapy versus active vitamin D analog (D-hormone) therapy. Calcif Tissue Int 65:295–306

    CAS  PubMed  Google Scholar 

  40. Frolik CA, Deluca HF (1971) 1, 25-dihydroxycholecalciferol: the metabolite of vitamin D responsible for increased intestinal calcium transport. Arch Biochem Biophys 147:143–147

    CAS  PubMed  Google Scholar 

  41. Shiraishi A, Higashi S, Ohkawa H, Kubodera N, Hirasawa T, Ezawa I, Ikeda K, Ogata E (1999) The advantage of alfacalcidol over vitamin D in the treatment of osteoporosis. Calcif Tissue Int 65:311–316

    CAS  PubMed  Google Scholar 

  42. Richy F, Ethgen O, Bruyere O, Reginster JY (2004) Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int 15:301–310

    CAS  PubMed  Google Scholar 

  43. Bischoff HA, Stahelin HB, Tyndall A, Theiler R (2000) Relationship between muscle strength and vitamin D metabolites: are there therapeutic possibilities in the elderly? Z Rheumatol 59(Suppl 1):39–41

    PubMed  Google Scholar 

  44. Bischoff HA, Stahelin HB, Urscheler N, Ehrsam R, Vonthein R, Perrig-Chiello P, Tyndall A, Theiler R (1999) Muscle strength in the elderly: its relation to vitamin D metabolites. Arch Phys Med Rehabil 80:54–58

    CAS  PubMed  Google Scholar 

  45. Xia WB, Zhang ZL, Wang HF, Meng XW, Zhang Y, Zhu GY, Xing XP, Liu JL, Wang LH, Jiang Y, Weng SF, Xu T, Hu YY, Yu W, Tian JP (2009) The efficacy and safety of calcitriol and/or Caltrate D in elderly Chinese women with low bone mass. Acta Pharmacol Sin 30:372–378

    CAS  PubMed  Google Scholar 

  46. Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707

    CAS  PubMed  Google Scholar 

  47. Evans JG (1988) Falls and fractures. Age Ageing 17:361–364

    CAS  PubMed  Google Scholar 

  48. Dukas L, Staehelin HB, Schacht E, Bischoff HA (2005) Better functional mobility in community-dwelling elderly is related to D-hormone serum levels and to daily calcium intake. J Nutr Health Aging 9:347–351

    CAS  PubMed  Google Scholar 

  49. Faulkner KA, Cauley JA, Zmuda JM, Landsittel DP, Newman AB, Studenski SA, Redfern MS, Ensrud KE, Fink HA, Lane NE, Nevitt MC (2006) Higher 1,25-dihydroxyvitamin D3 concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 17:1318–1328

    CAS  PubMed  Google Scholar 

  50. Moreland JD, Richardson JA, Goldsmith CH, Clase CM (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52:1121–1129

    PubMed  Google Scholar 

  51. Muir SW, Berg K, Chesworth B, Klar N, Speechley M (2009) Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: a systematic review and meta-analysis. J Clin Epidemiol. doi:10.1016/j.jclinepi.2009.06.010

  52. Gallagher JC (2004) The effects of calcitriol on falls and fractures and physical performance tests. J Steroid Biochem Mol Biol 89–90:497–501

    PubMed  Google Scholar 

  53. Gallagher JC, Fowler SE, Detter JR, Sherman SS (2001) Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J Clin Endocrinol Metab 86:3618–3628

    CAS  PubMed  Google Scholar 

  54. Richy F, Dukas L, Schacht E (2008) Differential effects of d-hormone analogs and native vitamin d on the risk of falls: a comparative meta-analysis. Calcif Tissue Int 82:102–107

    CAS  PubMed  Google Scholar 

  55. Avenell A, Gillespie WJ, Gillespie LD, O'Connell DL (2005) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database SystRev CD000227.

  56. Richy F, Schacht E, Bruyere O, Ethgen O, Gourlay M, Reginster JY (2005) Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int 76:176–186

    CAS  PubMed  Google Scholar 

  57. Avenell A, Gillespie WJ, Gillespie LD, O'Connell D (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev 2:CD000227

  58. Jones G, Hogan DB, Yendt E, Hanley DA (1996) Prevention and management of osteoporosis: consensus statements from the Scientific Advisory Board of the Osteoporosis Society of Canada. 8. Vitamin D metabolites and analogs in the treatment of osteoporosis. CMAJ 155:955–961

    CAS  PubMed  Google Scholar 

  59. Nuti R, Bonucci E, Brancaccio D, Gallagher JC, Gennari C, Mazzuoli G, Passeri M, Sambrook P (2000) The role of calcitriol in the treatment of osteoporosis. Calcif Tissue Int 66:239–240

    CAS  PubMed  Google Scholar 

  60. de Nijs RN, Jacobs JW, Algra A, Lems WF, Bijlsma JW (2004) Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analogues: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos Int 15:589–602

    PubMed  Google Scholar 

  61. Dechant KL, Goa KL (1994) Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging 5:300–317

    CAS  PubMed  Google Scholar 

  62. Eastell R, Hannon RA (2008) Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc 67:157–162

    PubMed  Google Scholar 

  63. Garnero P (2008) Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther 12:157–170

    CAS  PubMed  Google Scholar 

  64. Pagani F, Francucci CM, Moro L (2005) Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest 28:8–13

    CAS  PubMed  Google Scholar 

  65. Aloia JF, Vaswani A, Yeh JK, Ellis K, Yasumura S, Cohn SH (1988) Calcitriol in the treatment of postmenopausal osteoporosis. Am J Med 84:401–408

    CAS  PubMed  Google Scholar 

  66. Caniggia A, Nuti R, Galli M, Lore F, Turchetti V, Righi GA (1986) Effect of a long-term treatment with 1, 25-dihydroxyvitamin D3 on osteocalcin in postmenopausal osteoporosis. Calcif Tissue Int 38:328–332

    CAS  PubMed  Google Scholar 

  67. Caniggia A, Nuti R, Lore F, Martini G, Turchetti V, Righi G (1990) Long-term treatment with calcitriol in postmenopausal osteoporosis. Metabolism 39:43–49

    CAS  PubMed  Google Scholar 

  68. Gallagher JC, Jerpbak CM, Jee WS, Johnson KA, DeLuca HF, Riggs BL (1982) 1, 25-Dihydroxyvitamin D3: short- and long-term effects on bone and calcium metabolism in patients with postmenopausal osteoporosis. Proc Natl Acad Sci U S A 79:3325–3329

    CAS  PubMed  Google Scholar 

  69. Gram J, Junker P, Nielsen HK, Bollerslev J (1996) Dose-response effect of short-term calcitriol treatment on bone and mineral metabolism in normal males. Bone 18:539–544

    CAS  PubMed  Google Scholar 

  70. Inanir A, Ozoran K, Tutkak H, Mermerci B (2004) The effects of calcitriol therapy on serum interleukin-1, interleukin-6 and tumour necrosis factor-alpha concentrations in post-menopausal patients with osteoporosis. J Int Med Res 32:570–582

    CAS  PubMed  Google Scholar 

  71. Lambrinoudaki I, Chan DT, Lau CS, Wong RW, Yeung SS, Kung AW (2000) Effect of calcitriol on bone mineral density in premenopausal Chinese women taking chronic steroid therapy. A randomized, double blind, placebo controlled study. J Rheumatol 27:1759–1765

    CAS  PubMed  Google Scholar 

  72. Ott SM, Chesnut CH 3rd (1989) Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med 110:267–274

    CAS  PubMed  Google Scholar 

  73. Riggs BL, Nelson KI (1985) Effect of long term treatment with calcitriol on calcium absorption and mineral metabolism in postmenopausal osteoporosis. J Clin Endocrinol Metab 61:457–461

    CAS  PubMed  Google Scholar 

  74. Sairanen S, Karkkainen M, Tahtela R, Laitinen K, Makela P, Lamberg-Allardt C, Valimaki MJ (2000) Bone mass and markers of bone and calcium metabolism in postmenopausal women treated with 1,25-dihydroxyvitamin D (Calcitriol) for four years. Calcif Tissue Int 67:122–127

    CAS  PubMed  Google Scholar 

  75. Sambrook P, Henderson NK, Keogh A, MacDonald P, Glanville A, Spratt P, Bergin P, Ebeling P, Eisman J (2000) Effect of calcitriol on bone loss after cardiac or lung transplantation. J Bone Miner Res 15:1818–1824

    CAS  PubMed  Google Scholar 

  76. Shane E, Addesso V, Namerow PB, McMahon DJ, Lo SH, Staron RB, Zucker M, Pardi S, Maybaum S, Mancini D (2004) Alendronate versus calcitriol for the prevention of bone loss after cardiac transplantation. N Engl J Med 350:767–776

    CAS  PubMed  Google Scholar 

  77. Sirtori P, Sosio C, Resmini G, Rubinacci A (1996) Effect of short course of 1,25-dihydroxyvitamin D3 on biochemical markers of bone remodelling in postmenopausal women. Pharmacol Res 33:353–359

    CAS  PubMed  Google Scholar 

  78. Stempfle HU, Werner C, Echtler S, Wehr U, Rambeck WA, Siebert U, Uberfuhr P, Angermann CE, Theisen K, Gartner R (1999) Prevention of osteoporosis after cardiac transplantation: a prospective, longitudinal, randomized, double-blind trial with calcitriol. Transplantation 68:523–530

    CAS  PubMed  Google Scholar 

  79. Tjellesen L, Christiansen C, Rodbro P (1984) Effect of 1,25-dihydroxyvitamin D3 on biochemical indices of bone turnover in postmenopausal women. Acta Med Scand 215:411–415

    CAS  PubMed  Google Scholar 

  80. Tsukamoto Y, Watanabe T, Nakagami T, Morishita K (2003) Effect of treatment with oral calcitriol on calcium metabolism and fasting serum 25(OH)- or 1,25(OH)2-vitamin D level in Japanese postmenopausal women. Endocr J 50:681–687

    CAS  PubMed  Google Scholar 

  81. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    CAS  PubMed  Google Scholar 

  82. Ebeling PR, Wark JD, Yeung S, Poon C, Salehi N, Nicholson GC, Kotowicz MA (2001) Effects of calcitriol or calcium on bone mineral density, bone turnover, and fractures in men with primary osteoporosis: a two-year randomized, double blind, double placebo study. J Clin Endocrinol Metab 86:4098–4103

    CAS  PubMed  Google Scholar 

  83. Arthur RS, Piraino B, Candib D, Cooperstein L, Chen T, West C, Puschett J (1990) Effect of low-dose calcitriol and calcium therapy on bone histomorphometry and urinary calcium excretion in osteopenic women. Miner Electrolyte Metab 16:385–390

    CAS  PubMed  Google Scholar 

  84. Dambacher MA, Kranich M, Schacht E, Neff M (1997) Can the fast bone loss in osteoporotic and osteopenic patients be stopped with active vitamin D metabolites? Calcif Tissue Int 60:115–118

    CAS  PubMed  Google Scholar 

  85. Falch JA, Odegaard OR, Finnanger AM, Matheson I (1987) Postmenopausal osteoporosis: no effect of three years treatment with 1,25-dihydroxycholecalciferol. Acta Med Scand 221:199–204

    CAS  PubMed  Google Scholar 

  86. Fujita T (1990) Studies of osteoporosis in Japan. Metabolism 39:39–42

    CAS  PubMed  Google Scholar 

  87. Gallagher JC, Goldgar D (1990) Treatment of postmenopausal osteoporosis with high doses of synthetic calcitriol. A randomized controlled study. Ann Intern Med 113:649–655

    CAS  PubMed  Google Scholar 

  88. Mirzaei S, Zajicek HK, Knoll P, Hahn M, Levi M, Kohn H, Pohl W (2003) Effect of rocaltrol on bone mass in patients with pulmonary disease treated with corticosteroids. J Asthma 40:251–255

    CAS  PubMed  Google Scholar 

  89. Need AG, Nordin C, Horowitz M, Morris HA (1990) Calcium and calcitriol therapy in osteoporotic postmenopausal women with impaired calcium absorption. Metabolism 39:53–54

    CAS  PubMed  Google Scholar 

  90. Tilyard M (1990) Low-dose calcitriol versus calcium in established postmenopausal osteoporosis. Metabolism 39:50–52

    CAS  PubMed  Google Scholar 

  91. Diaz PR, Neira LC, Fischer SG, Teresa Torres MC, Milinarsky AT, Giadrosich VR, Arriagada MM, Arinoviche RS, Casanova DM (2008) Effect of 1,25(OH)2-vitamin D on bone mass in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 30:15–19

    CAS  PubMed  Google Scholar 

  92. Caniggia A, Nuti R, Martini G, Frediani B, Giovani S, Valenti R, Silvestri G, Matarazzo M (1996) Efficacy and safety of long-term, open-label treatment with calcitriol in postmenopausal osteoporosis: a retrospective analysis. Curr Ther Res 57:857–868

    CAS  Google Scholar 

  93. Gallagher JC, Riggs BL, Recker RR, Goldgar D (1989) The effect of calcitriol on patients with postmenopausal osteoporosis with special reference to fracture frequency. Proc Soc Exp Biol Med 191:287–292

    CAS  PubMed  Google Scholar 

  94. Tilyard MW, Spears GF, Thomson J, Dovey S (1992) Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357–362

    Article  CAS  PubMed  Google Scholar 

  95. Barone A, Giusti A, Pioli G, Girasole G, Razzano M, Pizzonia M, Palummeri E, Bianchi G (2007) Secondary hyperparathyroidism due to hypovitaminosis D affects bone mineral density response to alendronate in elderly women with osteoporosis: a randomized controlled trial. J Am Geriatr Soc 55:752–757

    PubMed  Google Scholar 

  96. Cosman F, Nieves J, Shen V, Lindsay R (1995) Oral 1,25-dihydroxyvitamin D administration in osteoporotic women: effects of estrogen therapy. J Bone Miner Res 10:594–600

    CAS  PubMed  Google Scholar 

  97. Eriksson SA, Lindgren JU (1993) Combined treatment with calcitonin and 1,25-dihydroxyvitamin D3 for osteoporosis in women. Calcif Tissue Int 53:26–28

    CAS  PubMed  Google Scholar 

  98. Gram J, Junker P, Nielsen HK, Bollerslev J (1998) Effects of short-term treatment with prednisolone and calcitriol on bone and mineral metabolism in normal men. Bone 23:297–302

    CAS  PubMed  Google Scholar 

  99. Gutteridge DH, Holzherr ML, Retallack RW, Price RI, Will RK, Dhaliwal SS, Faulkner DL, Stewart GO, Stuckey BG, Prince RL, Criddle RA, Drury PJ, Tran L, Bhagat CI, Kent GN, Jamrozik K (2003) A randomized trial comparing hormone replacement therapy (HRT) and HRT plus calcitriol in the treatment of postmenopausal osteoporosis with vertebral fractures: benefit of the combination on total body and hip density. Calcif Tissue Int 73:33–43

    CAS  PubMed  Google Scholar 

  100. Rhee Y, Kang M, Min Y, Byun D, Chung Y, Ahn C, Baek K, Mok J, Kim D, Kim D, Kim H, Kim Y, Myoung S, Kim D, Lim SK (2006) Effects of a combined alendronate and calcitriol agent (Maxmarvil) on bone metabolism in Korean postmenopausal women: a multicenter, double-blind, randomized, placebo-controlled study. Osteoporos Int 17:1801–1807

    CAS  PubMed  Google Scholar 

  101. Sambrook P, Birmingham J, Kelly P, Kempler S, Nguyen T, Pocock N, Eisman J (1993) Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med 328:1747–1752

    CAS  PubMed  Google Scholar 

  102. Frediani B, Allegri A, Bisogno S, Marcolongo R (1998) Effects of combined treatment with calcitriol plus alendronate on bone mass and bone turnover in postmenopausal osteoporosis: two years of continuous treatment. Clinical Drug Investigation 15:235

    CAS  Google Scholar 

  103. Gurlek A, Bayraktar M, Gedik O (1997) Comparison of calcitriol treatment with etidronate-calcitriol and calcitonin-calcitriol combinations in Turkish women with postmenopausal osteoporosis: a prospective study. Calcif Tissue Int 61:39–43

    CAS  PubMed  Google Scholar 

  104. Jensen GF, Christiansen C, Transbol I (1982) Treatment of post menopausal osteoporosis. A controlled therapeutic trial comparing oestrogen/gestagen, 1,25-dihydroxy-vitamin D3 and calcium. Clin Endocrinol (Oxf) 16:515–524

    CAS  Google Scholar 

  105. Malavolta N, Zanardi M, Veronesi M, Ripamonti C, Gnudi S (1999) Calcitriol and alendronate combination treatment in menopausal women with low bone mass. Int J Tissue React 21:51–59

    CAS  PubMed  Google Scholar 

  106. Masud T, Mulcahy B, Thompson AV, Donnelly S, Keen RW, Doyle DV, Spector TD (1998) Effects of cyclical etidronate combined with calcitriol versus cyclical etidronate alone on spine and femoral neck bone mineral density in postmenopausal osteoporotic women. Ann Rheum Dis 57:346–349

    CAS  PubMed  Google Scholar 

  107. Schacht E, Dukas L, Richy F (2007) Combined therapies in osteoporosis: bisphosphonates and vitamin D-hormone analogs. JMNI 7:174–184

    CAS  PubMed  Google Scholar 

  108. Chan JS, Beer TM, Quinn DI, Pinski JK, Garzotto M, Sokoloff M, Dehaze DR, Ryan CW (2008) A phase II study of high-dose calcitriol combined with mitoxantrone and prednisone for androgen-independent prostate cancer. BJU Int 102:1601–1606

    CAS  PubMed  Google Scholar 

  109. Beer TM, Ryan CW, Venner PM, Petrylak DP, Chatta GS, Ruether JD, Redfern CH, Fehrenbacher L, Saleh MN, Waterhouse DM, Carducci MA, Vicario D, Dreicer R, Higano CS, Ahmann FR, Chi KN, Henner WD, Arroyo A, Clow FW (2007) Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators. J Clin Oncol 25:669–674

    CAS  PubMed  Google Scholar 

  110. Beer TM, Eilers KM, Garzotto M, Egorin MJ, Lowe BA, Henner WD (2003) Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J Clin Oncol 21:123–128

    CAS  PubMed  Google Scholar 

  111. Petrioli R, Pascucci A, Francini E, Marsili S, Sciandivasci A, De Rubertis G, Barbanti G, Manganelli A, Salvestrini F, Francini G (2007) Weekly high-dose calcitriol and docetaxel in patients with metastatic hormone-refractory prostate cancer previously exposed to docetaxel. BJU Int 100:775–779

    CAS  PubMed  Google Scholar 

  112. Tiffany NM, Ryan CW, Garzotto M, Wersinger EM, Beer TM (2005) High dose pulse calcitriol, docetaxel and estramustine for androgen independent prostate cancer: a phase I/II study. J Urol 174:888–892

    CAS  PubMed  Google Scholar 

  113. Fakih MG, Trump DL, Muindi JR, Black JD, Bernardi RJ, Creaven PJ, Schwartz J, Brattain MG, Hutson A, French R, Johnson CS (2007) A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral gefitinib in patients with advanced solid tumors. Clin Cancer Res 13:1216–1223

    CAS  PubMed  Google Scholar 

  114. Beer TM, Javle MM, Ryan CW, Garzotto M, Lam GN, Wong A, Henner WD, Johnson CS, Trump DL (2007) Phase I study of weekly DN-101, a new formulation of calcitriol, in patients with cancer. Cancer Chemother Pharmacol 59:581–587

    CAS  PubMed  Google Scholar 

  115. Trump DL, Potter DM, Muindi J, Brufsky A, Johnson CS (2006) Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 106:2136–2142

    CAS  PubMed  Google Scholar 

  116. Beer TM (2005) ASCENT: the androgen-independent prostate cancer study of calcitriol enhancing taxotere. BJU Int 96:508–513

    CAS  PubMed  Google Scholar 

  117. Beer TM, Garzotto M, Katovic NM (2004) High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am J Clin Oncol 27:535–541

    CAS  PubMed  Google Scholar 

  118. Beer TM, Javle M, Lam GN, Henner WD, Wong A, Trump DL (2005) Pharmacokinetics and tolerability of a single dose of DN-101, a new formulation of calcitriol, in patients with cancer. Clin Cancer Res 11:7794–7799

    CAS  PubMed  Google Scholar 

  119. Beer TM, Munar M, Henner WD (2001) A Phase I trial of pulse calcitriol in patients with refractory malignancies: pulse dosing permits substantial dose escalation. Cancer 91:2431–2439

    CAS  PubMed  Google Scholar 

  120. Beer TM, Myrthue A, Garzotto M, O'Hara MF, Chin R, Lowe BA, Montalto MA, Corless CL, Henner WD (2004) Randomized study of high-dose pulse calcitriol or placebo prior to radical prostatectomy. Cancer Epidemiol Biomarkers Prev 13:2225–2232

    CAS  PubMed  Google Scholar 

  121. Beer TM, Ryan CW, Venner PM, Petrylak DP, Chatta GS, Ruether JD, Chi KN, Young J, Henner WD (2008) Intermittent chemotherapy in patients with metastatic androgen-independent prostate cancer: results from ASCENT, a double-blinded, randomized comparison of high-dose calcitriol plus docetaxel with placebo plus docetaxel. Cancer 112:326–330

    CAS  PubMed  Google Scholar 

  122. Muindi JR, Peng Y, Potter DM, Hershberger PA, Tauch JS, Capozzoli MJ, Egorin MJ, Johnson CS, Trump DL (2002) Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther 72:648–659

    CAS  PubMed  Google Scholar 

  123. Muindi JR, Potter DM, Peng Y, Johnson CS, Trump DL (2005) Pharmacokinetics of liquid calcitriol formulation in advanced solid tumor patients: comparison with caplet formulation. Cancer Chemother Pharmacol 56:492–496

    CAS  PubMed  Google Scholar 

  124. Moher D, Schulz KF, Altman DG (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 357:1191–1194

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are recipients of National Cancer Institute grant 1R25-CA102618-01A1.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Peppone.

Additional information

Grant support

National Cancer Institute 1R25-CA102618-01A1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peppone, L.J., Hebl, S., Purnell, J.Q. et al. The efficacy of calcitriol therapy in the management of bone loss and fractures: a qualitative review. Osteoporos Int 21, 1133–1149 (2010). https://doi.org/10.1007/s00198-009-1136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1136-2

Keywords

Navigation