Skip to main content

Advertisement

Log in

ISRm31, a new insertion sequence of the IS66 family in Sinorhizobium meliloti

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sinorhizobium meliloti natural populations show a high level of genetic polymorphism possibly due to the presence of mobile genetic elements such as insertion sequences (IS), transposons, and bacterial mobile introns. The analysis of the DNA sequence polymorphism of the nod region of S. meliloti pSymA megaplasmid in an Italian isolate led to the discovery of a new insertion sequence, ISRm31. ISRm31 is 2,803 bp long and has 22-bp-long terminal inverted repeat sequences, 8-bp direct repeat sequences generated by transposition, and three ORFs (A, B, C) coding for proteins of 124, 115, and 541 amino acids, respectively. ORF A and ORF C are significantly similar to members of the transposase family. Amino acid and nucleotide sequences indicate that ISRm31 is a member of the IS66 family. ISRm31 sequences were found in 30.5% of the Italian strains analyzed, and were also present in several collection strains of the Rhizobiaceae family, including S. meliloti strain 1021. Alignment of targets sites in the genome of strains carrying ISRm31 suggested that ISRm31 inserts randomly into S. meliloti genomes. Moreover, analysis of ISRm31 insertion sites revealed DNA sequences not present in the recently sequenced S. meliloti strain 1021 genome. In fact, ISRm31 was in some cases linked to DNA fragments homologous to sequences found in other rhizobia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1. A
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JD, Smith JA, Struhl K (1989) Current protocols on molecular biology. Wiley, New York

  • Barnett MJ, Fisher RF, T Jones, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Kuo-Chen Yeh, Davis RW, Federspiel NA, Long SR (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    CAS  PubMed  Google Scholar 

  • Bender J, Kleckner N (1992) Tn10 insertion specificity strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. Proc Natl Acad Sci USA 89:7996–8000

    CAS  PubMed  Google Scholar 

  • Biondi EG, Fancelli S, Bazzicalupo M (1999) ISRm10: a new insertion sequence of Sinorhizobium meliloti: nucleotide sequence and geographic distribution. FEMS Microbiol Lett 181:171–176

    Article  CAS  PubMed  Google Scholar 

  • Biondi E.G., Pilli E, Giuntini E, Roumiantseva ML, Andronov EE, Onichtchouk OP, Kurchak ON, Simarov BV, Dzyubenko NI, Mengoni A, Bazzicalupo M (2003) Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region. FEMS Microbiol Lett 220:207–213

  • Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93:5–12

    CAS  PubMed  Google Scholar 

  • Calcutt MJ, Lavrrar JL, Wise KS (1999) IS1630 of Mycoplasma fermentans, a novel IS30-type insertion element that targets and duplicates inverted repeats of variable length and sequence during insertion. J Bacteriol 181:7597–7607

    CAS  PubMed  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dréano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Pühler A, Purnelle B, Ramsperger U, C Renard, Vandenbol M, Weidner S, Galibert F (2001). Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882

    CAS  PubMed  Google Scholar 

  • Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M (2000) Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Appl Environ Microbiol 66:4785–4789

    Article  CAS  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    CAS  PubMed  Google Scholar 

  • Deonier RC (1996) Native insertion sequence elements: locations, distributions, and sequence relationships. In: Neidhardt FC, Curtiss R III, Ingraham JL et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 2000–2011

  • Dusha I, Kovalenko S, Banfalvi Z and Kondorosi A (1987) Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J. Bacteriol. 169:1403–1409

    Google Scholar 

  • Federoff N (1983) Controlling elements in maize. In: Shapiro J (ed) Mobile genetic elements. Academic, New York, pp 1–63

  • Finan, TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pühler A (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894

    Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    Google Scholar 

  • Galibert F, Finan MT, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MeC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vandenbol M, Vorhölter FJ, Weidner S, Wells DH, Wong K, Kuo-Chen Yeh, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

  • Hall BG (1999) Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J Bacteriol 181:1149–1155

    Google Scholar 

  • Halling SM, Kleckner N (1982) A symmetrical six-base pair target site sequence determines Tn10 insertion specificity. Cell 28:155–163

    CAS  PubMed  Google Scholar 

  • Han CG, Shiga Y, Tobe T, Sasakawa C, Ohtsubo E (2001) Structural and functional characterization of IS679 and IS66-family elements. J Bacteriol 183:4296–304.

    Article  CAS  PubMed  Google Scholar 

  • Hartl DL, Medhora M, Green L, Dykhuizen DE (1986) The evolution of DNA sequences in Escherichia coli. Philos Trans R Soc Lond Ser B 312:191–204

    CAS  Google Scholar 

  • Hu W, Derbyshire KM (1998) Target choice and orientation preference of the insertion sequence IS903. J Bacteriol 180:3039–3048

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CAS  PubMed  Google Scholar 

  • Kitamura K, Torii Y, Matsuoka C, Yamamoto K (1995) DNA sequence changes in mutations in the tonB gene on the chromosome of Escherichia coli K12: insertion elements dominate the mutational spectra. Jpn J Genet 70:35–46

    CAS  PubMed  Google Scholar 

  • Laberge S, AT Middleton, R Wheatcroft (1995) Characterization, nucleotide sequence, and conserved genomic locations of insertion sequence ISRm5 in Rhizobium meliloti. J Bacteriol 177:3133–3142

    Google Scholar 

  • Lieb M (1981) A fine structure map of spontaneous and induced mutations in the lambda repressor gene, including insertions of IS elements. Mol Gen Genet 184:364–371

    CAS  PubMed  Google Scholar 

  • Louarn JM, Bouche JP, Legendre F, Louarn J, Patte J (1985) Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axes. Mol Gen Genet 201:467–476

    CAS  PubMed  Google Scholar 

  • Mahillon M, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Panchenko AR,Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1965) The control of gene expression in maize. Brookhaven Symp Biol 18:162–184

    Google Scholar 

  • Murphy PJ, Trenz SP, Grzemski W, De Bruijn FJ, Schell J (1993) The Rhizobium meliloti rhizopine mos locus is a mosaic structure facilitating its symbiotic regulation. J Bacteriol 175:5193–5204

    CAS  PubMed  Google Scholar 

  • Olasz F, Farkas T, Kiss J, Arini A, Arber W (1997) Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition. J Bacteriol 179:7551–7558

    CAS  PubMed  Google Scholar 

  • Paffetti D, C Scotti, S Gnocchi, S Fancelli, M Bazzicalupo (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa cultivars. Appl Environ Microbiol 62:2279–2285

    CAS  PubMed  Google Scholar 

  • Paffetti D, Daguin F, Fancelli S, Gnocchi S, Lippi F, Scotti C. Bazzicalupo M (1998) Influence of plant genotype on the selection of nodulating Sinorhizobium meliloti by Medicago sativa. Antonie Van Leeuwenhoek 73:3–8

    Article  CAS  PubMed  Google Scholar 

  • Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533

    Article  CAS  PubMed  Google Scholar 

  • Reif HJ, Saedler H (1975) IS1 is involved in deletion formation in the gal region of E. coli K12. Mol Gen Genet 137:17–28

    CAS  PubMed  Google Scholar 

  • Rodriguez H, Snow ET, Bhat U, Loechler EL (1992) An Escherichia coli plasmid-based, mutational system in which supF mutants are selectable: insertion elements dominate the spontaneous spectra. Mutat Res 270:219–231

    Article  CAS  PubMed  Google Scholar 

  • Ruvkun GB, Long SR, Meade HM, van der Bos RC, Ausubel FM (1982) ISRm1: a Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet 1:405–418

    PubMed  Google Scholar 

  • Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488

    CAS  PubMed  Google Scholar 

  • Selbitschka W, Zekri S, Schroder G, Puhler A, Toro N (1999) The Sinorhizobium meliloti insertion sequence (IS) elements ISRm102F34-1/ISRm7 and ISRm220–13–5 belong to a new family of insertion sequence elements. FEMS Microbiol Lett 172:1–7

    CAS  PubMed  Google Scholar 

  • Shirai M, Hirakawa H, Kimoto M, Tabuchi M, Kishi F, Ouchi K, Shiba T, Ishii K, Hattori M, Kuhara S, Nakazawa T (2000) Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. Nucleic Acids Res 28:2311–2314

    Article  CAS  PubMed  Google Scholar 

  • Zekri S, Toro N (1998) A new insertion sequence from Sinorhizobium meliloti with homology to IS1357 from Methylobacterium sp. and IS1452 from Acetobacter pasteurianus. FEMS Microbiol Lett 158(1):83–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bazzicalupo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biondi, E.G., Femia, A.P., Favilli, F. et al. ISRm31, a new insertion sequence of the IS66 family in Sinorhizobium meliloti . Arch Microbiol 180, 118–126 (2003). https://doi.org/10.1007/s00203-003-0568-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0568-x

Keywords

Navigation