Skip to main content
Log in

Rhizobium etli maize populations and their competitiveness for root colonization

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rhizobium etli, which normally forms nitrogen-fixing nodules on Phaseolus vulgaris (common bean), is a natural maize endophyte. The genetic diversity of R. etli strains from bulk soil, bean nodules, the maize rhizosphere, the maize root, and inside stem tissue in traditional fields where maize is intercropped with P. vulgaris-beans was analyzed. Based on plasmid profiles and alloenzymes, it was determined that several R. etli types were preferentially encountered as putative maize endophytes. Some of these strains from maize were more competitive maize-root colonizers than other R. etli strains from the rhizosphere or from bean nodules. The dominant and highly competitive strain Ch24-10 was the most tolerant to 6-methoxy-2-benzoxazolinone (MBOA), a maize antimicrobial compound that is inhibitory to some bacteria and fungi. The R. tropici strain CIAT899, successfully used as inoculant of P. vulgaris, was also found to be a competitive maize endophyte in inoculation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Durán C, Martínez Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch Microbiol 178:161–164

    Article  PubMed  Google Scholar 

  • Alexander DB, Zuberer DA (1989) 15N2 fixation by bacteria associated with maize roots at a low partial O2 pressure. Appl Environ Microbiol 55:1748–1753

    CAS  Google Scholar 

  • Bala A, Murphy P, Giller KE (2001) Genetic diversity of rhizobia from natural populations varies with the soil dilution sampled. Soil Biol Biochem 33:841–843

    Article  CAS  Google Scholar 

  • Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S, Vandamme P (2001) Burholderia cepacia genomovar III is a common plant-associated bacterium. Appl Environ Microbiol 67:982–985

    Article  CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Google Scholar 

  • Brom S, Girard L, García-de los Santos A, Sanjuan-Pinilla JM, Olivares J, Sanjuán J (2002) Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species. Appl Environ Microbiol 68:2555–2561

    Article  CAS  PubMed  Google Scholar 

  • Bromfield ESP, Barran LR, Wheatcroft R (1995) Relative genetic structure of a population of Rhizobium meliloti isolated directly from soil and from nodules of alfalfa (Medicago sativa) and sweet clover (Melilotus alba). Mol Ecol 4:183–188

    Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Bâ A, Gillis M, De Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    CAS  PubMed  Google Scholar 

  • Chiarini L, Giovannelli V, Bevivino A, Dalmastri C, Tabacchioni S (2000) Different portions of the maize root system host Burkholderia cepacia populations with different degrees of genetic polymorphism. Environ Microbiol 2:111–118

    Article  CAS  PubMed  Google Scholar 

  • Corcuera LJ, Woodward MD, Helgeson JP, Kelman A, Upper CD (1978) 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiol 61:791–795

    CAS  Google Scholar 

  • Dobereiner J, Urquiaga S, Boddey RM (1995) Alternatives for nitrogen nutrition of crops in tropical agriculture. Fert Res 42:339–346

    CAS  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  CAS  PubMed  Google Scholar 

  • Fahraeus G (1957) The infection of clover root hair by nodule bacteria studied by a single glass slide technique. J Gen Microbiol 16:374–381

    PubMed  Google Scholar 

  • Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128

    Google Scholar 

  • García-de los Santos A, Brom S (1997) Characterization of two plasmid-borne lpsβ loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. Mol Plant Microbe Interact 10:891–902

    PubMed  Google Scholar 

  • García de Salamone IEG, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the superior 1 superior 5N isotope dilution technique. Biol Fertil Soils 23:249–256

    Article  Google Scholar 

  • Giller KE, Merckx R (2003) Exploring the boundaries of N2-fixation in cereals and grasses: an hypothetical and experimental framework. Symbiosis 35:3–17

    CAS  Google Scholar 

  • Girard L, Brom S, Dávalos A, López O, Soberón M, Romero D (2000) Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixLfixK cascade. Mol Plant Microbe Interact 13:1283–1292

    CAS  PubMed  Google Scholar 

  • Glenn AE, Hinton DM, Yates IE, Bacon CW (2001) Detoxification of corn antimicrobial compounds as the basis for isolating Fusarium verticillioides and some other Fusarium species from corn. Appl Environ Microbiol 67:2973–2981

    Article  CAS  PubMed  Google Scholar 

  • González-Pasayo R, Martínez-Romero E (2000) Multiresistance genes of Rhizobium etli CFN42. Mol Plant Microbe Interact 13:572–577

    PubMed  Google Scholar 

  • Graham PH, Viteri SE, Mackie F, Vargas AAT, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res 5:121–128

    Article  Google Scholar 

  • Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145

    Article  CAS  Google Scholar 

  • Hartmann A, Amarger N (1991) Genotypic diversity of an indigenous Rhizobium meliloti field population assessed by plasmid profiles, DNA fingerprinting, and insertion sequence typing. Can J Microbiol 37:600–608

    CAS  Google Scholar 

  • Hungria M, Vargas MAT, Campo RJ, Chueire LMO, De S Andrade D (2000) The Brazilian experience with the soybean (Glycine max) and common bean (Phaseolus vulgaris) symbioses. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, The Netherlands, pp 515

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    CAS  PubMed  Google Scholar 

  • Hynes MF, McGregor NF (1990) Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol 4:567–574

    CAS  PubMed  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Makati City, Philippines, pp 119–140

  • Kellog EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    CAS  Google Scholar 

  • Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1–6

    Article  CAS  Google Scholar 

  • Ladha JK, García M, Miyan S, Padre A, Watanabe I (1989) Survival of Azorhizobium caulinodans in the soils and rhizosphere of wetland rice under Sesbania rostrata-rice rotation. Appl Environ Microbiol 55:454–460

    Google Scholar 

  • Martínez-Romero E (2003) Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23

    Article  Google Scholar 

  • Martínez-Romero E, Rosenblueth M (1990) Increased bean Phaseolus vulgaris L. nodulation competitiveness of genetically modified strains. Appl Environ Microbiol 56:2384–2388

    Google Scholar 

  • Mc Inroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    CAS  Google Scholar 

  • Miché L, Balandreau J (2001) Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl Environ Microbiol 67:3046–3052

    Article  PubMed  Google Scholar 

  • Perrine FM, Prayitno J, Weinman JJ, Dazzo FB, Rolfe BG (2001) Rhizobium plasmids are involved in the inhibition or stimulation of rice growth and development. Aust J Plant Physiol 28:923–937

    Article  CAS  Google Scholar 

  • Quinto C, de la Vega H, Flores M, Fernández L, Ballado T, Soberón G, Palacios R (1982) Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature 299:724–728

    CAS  Google Scholar 

  • Rennie RJ (1980) 15N-isotope dilution as a measure of dinitrogen fixation by Azospirillum brasilense associated with maize. Can J Bot 58:21–24

    CAS  Google Scholar 

  • Rosenblueth M, Hynes MF, Martínez-Romero E (1998) Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol Gen Genet 258:587–598

    Article  CAS  PubMed  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884

    CAS  PubMed  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Martínez-Romero E, Souza V (2002) Rhizobium etli and Rhizobium gallicum nodulate common bean in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications. Appl Environ Microbiol 69:884–893

    Article  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa rhizosphere colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 5:330–338

    Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38

    CAS  Google Scholar 

  • Von Bülow CFW, Döbereiner J (1975) Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci USA 72:2389–2393

    Google Scholar 

  • Wang ET, Rogel MA, García-de los Santos A, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999) Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491

    CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, De Bruijn F, Rademaker J, Maya-Flores J, Ostrom P (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    Article  CAS  Google Scholar 

  • Zézé A, Mutch LA, Young PW (2001) Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environ Microbiol 3:363–370

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Martínez-Romero, M. A. Rogel, M. C. Labastida, I. Toledo, A. Vilchis, and A. Mares for technical help, and L. E. Fuentes for providing us with maize plants. We acknowledge B. van Zinick for E.T. analysis, A. García-de los Santos, L. Girard, A. Ramos, C. Rodríguez, and J. Tellez-Sosa for primers and PCR products used in hybridization, and M. Dunn for reading the manuscript. Partial financial support was from PAPIIT-DGAPA IN201600 from 2001 to 2002 and from CONACyT grant 40997-Q from 2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Martínez-Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblueth, M., Martínez-Romero, E. Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181, 337–344 (2004). https://doi.org/10.1007/s00203-004-0661-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0661-9

Keywords

Navigation