Skip to main content

Advertisement

Log in

The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

During oxidation of reduced sulfur compounds, the purple sulfur bacterium Allochromatium vinosum stores sulfur in the periplasm in the form of intracellular sulfur globules. The sulfur in the globules is enclosed by a protein envelope that consists of the homologous 10.5-kDa proteins SgpA and SgpB and the smaller 8.5-kDa SgpC. Reporter gene fusions of sgpA and alkaline phosphatase showed the constitutive expression of sgpA in A. vinosum and yielded additional evidence for the periplasmic localization of the sulfur globules. Expression analysis of the wild-type sgp genes by quantitative RT-PCR using the LightCycler system showed the constitutive expression of all three sgp genes. The expression of sgpB and sgpC is significantly enhanced under photolithotrophic conditions. Interestingly, sgpB is expressed ten times less than sgpA and sgpC implying that SgpA and SgpC are the “main proteins” of the sulfur globule envelope. Mutants with inactivated sgpA or sgpB did not show any differences in comparison with the wild-type, i.e., the encoded proteins can replace each other, whereas inactivation of sgpC leads to the formation of considerably smaller sulfur globules. This indicates a role of SgpC for globule expansion. A sgpBC double mutant was unable to grow on sulfide and could not form sulfur globules, showing that the protein envelope is indispensible for the formation and deposition of intracellular sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Sgp:

Sulfur globule protein

sgp :

Sulfur globule protein gene

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K (1994–2000) Current protocols in molecular biology. Wiley, London

  • Bazaral M, Helinski DR (1968) Circular DNA from colicinogenic factors E1, E2 and E3 from Escherichia coli. J Mol Biol 36:185–194

    CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brickman E, Beckwith J (1975) Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and ϕ80 transducing phages. J Mol Biol 96:307–316

    CAS  PubMed  Google Scholar 

  • Brune DC (1989) Sulfur oxidation by photrophic bacteria. Biochim Biophys Acta 975:189–221

    CAS  PubMed  Google Scholar 

  • Brune DC (1995) Isolation of and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399

    Article  CAS  PubMed  Google Scholar 

  • Carothers AM, Urlab, G, Mucha J, Grunburger D, Chasin LA (1989) Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA and Taq-sequencing by a novel method. BioTechniques 7:494–499

    CAS  PubMed  Google Scholar 

  • Dahl C (1996) Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum. Microbiol UK 142:3363–3372

    CAS  Google Scholar 

  • Dahl C (1999) Deposition and oxidation of polymeric sulfur in prokaryotes. In: Steinbüchel A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Wiley-VCH, Weinheim, pp 27–34

  • Dahl C, Speich N, Trüper HG (1994) Enzymology and molecular biology of sulfate reduction in the extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol 243:331–349

    Article  CAS  PubMed  Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutation that allows disulfide bond formation in the cytoplasm of Escherichia coli. Science 262:1744–1747

    CAS  PubMed  Google Scholar 

  • Ehrmann M, Boyd D, Beckwith J (1990) Genetic analysis of membrane topology by a sandwich gene fusion approach. Proc Natl Acad Sci USA 87:7574–7578

    CAS  PubMed  Google Scholar 

  • Eisen JA et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Article  CAS  PubMed  Google Scholar 

  • Fellay R, Frey J, Krisch HM (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vivo insertional mutagenesis of Gram-negative bacteria. Gene 52:147–154

    Article  CAS  PubMed  Google Scholar 

  • Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. In: Glauert, AM (ed) Practical methods in electron microscopy, vol 17. Portland, London

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48:1129–1143

    PubMed  Google Scholar 

  • Kinsman R, Walsby AE, Hayes PK (1995) GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol Microbiol 17:147–154

    CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM,II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Leenhouts KJ, Kok J, Venema G (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl Environ Microbiol 56:2726–2735

    CAS  Google Scholar 

  • Mas J, van Gemerden H (1987) Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 146:362–369

    CAS  Google Scholar 

  • Michaelis S, Inouye H, Oliver, D, Beckwith J (1983) Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J Bacteriol 154:366–374

    CAS  PubMed  Google Scholar 

  • Murray V (1989) Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acid Res 17:8889

    CAS  PubMed  Google Scholar 

  • Nicolson GL, Schmidt GL (1971) Structure of the Chromatium sulfur particle and its protein membrane. J Bacteriol 105:1142–1148

    CAS  PubMed  Google Scholar 

  • Offner S, Ziese U, Wanner G, Typke D, Pfeiffer F (1998) Structural characteristics of halobacterial gas vesicles. Microbiol UK 152:61–87

    Google Scholar 

  • Offner S, Hofacker A, Wanner G, Pfeiffer F (2000) Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 182:4328–4336

    Article  CAS  PubMed  Google Scholar 

  • Pattaragulwanit K, Dahl C (1995) Development of a genetic system for a purple sulfur bacterium: conjugative plasmid transfer in Chromatium vinosum. Arch Microbiol 164:217–222

    Article  CAS  Google Scholar 

  • Pattaragulwanit K, Brune DC, Trüper HG, Dahl C (1998) Molecular genetic evidence for extracytoplasmatic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 3200–3221

    Google Scholar 

  • Pott AS, Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiol UK 144:1881–1894

    CAS  Google Scholar 

  • Prange A, Arzberger I, Engemann, C, Modrow H, Schumann O, Trüper HG, Steudel R, Dahl C, Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428:446–454

    Article  CAS  PubMed  Google Scholar 

  • Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG, Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiol UK 148:267–276

    CAS  Google Scholar 

  • Rethmeier J, Rabenstein A, Langer M, Fischer U (1997) Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. J Chromatogr A 760:295–302

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

  • Schlegel HG (1963) Die Schwefelpurpurbakterien. Umschau 18:573–577

    Google Scholar 

  • Schmidt GL, Nicolson GL, Kamen MD (1971) Composition of the sulfur particle of Chromatium vinosum strain D. J Bacteriol 105:1137–1141

    CAS  PubMed  Google Scholar 

  • Seibl R, Höltke, H-J, Rüger R, Meindl A, Zauchau HG, Raβhofer R, Roggendorf M, Wolf H, Arnold N, Wienberg J, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids. Biol Chem Hoppe Seyler 371:939–951

    CAS  PubMed  Google Scholar 

  • Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens SE, Strohl WR (1989) Functional inclusions in prokaryotic cells. Int Rev Cytol 113:35–100

    Google Scholar 

  • Siefert E, Pfennig N (1984) Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Arch Microbiol 139:100–101

    CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technol 1:784–791

    Google Scholar 

  • Strohl WR, Geffers I, Larkin JM (1981) Structure of the sulfur inclusion envelopes from four Beggiatoas. Curr Microbiol 6:75–79

    Google Scholar 

  • Strohl WR, Howard KS, Larkin JM (1982) Ultrastructure of Beggiatoa alba strain B15LD. J Gen Microbiol 128:73–84

    Google Scholar 

  • Then J (1984) Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. Doctoral thesis, University of Bonn, Germany

  • Trüper HG (1981) Photolithotrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 199–211

  • Trüper HG, Pfennig, N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek J Microbiol Serol 32:261–276

    Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94-144

    CAS  PubMed  Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Daniel C Brune (Arizona State University, Tempe, USA) for useful hints concerning HPLC analysis of the sulfur globule proteins, Brigitte Kühlmorgen for skilfull technical assistance with electron microscopy, and Kobchai Pattaragulwanit (Chulalongkorn University, Bangkok, Thailand) for helpful discussions. AP thanks the GEN-IAL GmbH (Troisdorf) for the possibility to perform the LightCycler experiments in their laboratory and the Stiftung der Deutschen Wirtschaft (Studienförderwerk Klaus Murmann) for a doctoral scholarship. This work was supported by the Deutsche Forschungsgemeinschaft (DFG grant Tr 133/26-1,2,3) and the Fonds der Chemischen Industrie (HGT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Dahl.

Additional information

The paper is dedicated to Prof. Dr. Dr. h.c. mult. Hans Günter Schlegel, Göttingen, on the occasion of his 80th birthday on October 24th, 2004, with great gratitude, as our interest in microbial sulfur metabolism goes back to the early 1960s, when HGT worked in Prof. Schlegels laboratory and in 1972 established this field in Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prange, A., Engelhardt, H., Trüper, H.G. et al. The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR. Arch Microbiol 182, 165–174 (2004). https://doi.org/10.1007/s00203-004-0683-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0683-3

Keywords

Navigation