Skip to main content
Log in

Pseudomonas aeruginosa dihydroorotases: a tale of three pyrCs

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa PAO1 was shown to contain three pyrC sequences. Two of these genes, designated pyrC (PA3527) and pyrC2 (PA5541), encode polypeptides with dihydroorotase (DHOase) activity, while the third, pyrC′ (PA0401), encodes a DHOase-like polypeptide that lacks DHOase activity, but is necessary for the structure and function of ATCase. Both pyrC and pyrC2 were cloned and complemented an Escherichia coli pyrC mutant. In addition, pyrC and pyrC2 were individually inactivated in P. aeruginosa by homologous exchange with a mutated allele of each. The resulting mutant strains were prototrophic. A pyrC, pyrC2 double mutant was also constructed, and this strain had an absolute requirement for pyrimidines. The transcriptional activity of pyrC and pyrC2 was measured using lacZ promoter fusions. While pyrC was found to be constitutively expressed, pyrC2 was expressed only in the pyrC mutant background. An in vitro transcriptional/translational system was used to estimate the size of the pyrC2 gene product. The expressed polypeptide was approximately 47 kDa, which is in keeping with the theoretical molecular mass of 48 kDa, making it the largest prokaryotic DHOase polypeptide identified to date. To our knowledge, this is the first report of a true DHOase mutant in P. aeruginosa and also the first confirmation that pyrC2 encodes a polypeptide with DHOase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altshul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Res 25:3308–3402

    Google Scholar 

  • Beckwith JR, Pardee AB, Austrian R, Jacob F (1962) Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J Mol Biol 5:618–634

    CAS  PubMed  Google Scholar 

  • Brichta DM (2003) Construction of a Pseudomonas aeruginosa dihydroorotase mutant and the discovery of a novel link between pyrimidine intermediates and virulence response. PhD dissertation. University of North Texas, Denton

  • Chu CP, West TP (1990) Pyrimidine biosynthetic pathway of Pseudomonas fluorescens. J Gen Microbiol 136:875–880

    CAS  PubMed  Google Scholar 

  • Denis-Duphil M (1989) Pyrimidine biosynthesis in Saccharomyces cerevisiae: the ura2 cluster gene, its multifunctional enzyme product, and other structural or regulatory genes involved in de novo UMP synthesis. Biochem Cell Biol 67:612–631

    CAS  PubMed  Google Scholar 

  • Enderle PJ, Farwell MA (1998) Electroporation of freshly plated Escherichia coli and Pseudomonas aeruginosa cells. Biotechniques 25:954–956, 958

    CAS  PubMed  Google Scholar 

  • Farinha MA, Kropinski AM (1990) Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3509

    CAS  PubMed  Google Scholar 

  • Galperin MY, Tatusov RL, Koonin EV (1999) Comparing microbial genomes: how the gene set determines the lifestyle. In: Charlebois RL (ed) Organization of the prokaryotic genome. American Society for Microbiology, Washington, pp 91–108

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  CAS  PubMed  Google Scholar 

  • Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    CAS  PubMed  Google Scholar 

  • Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28:72–82

    Article  CAS  PubMed  Google Scholar 

  • Isaac JH, Holloway BW (1968) Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 96:1732–1741

    CAS  PubMed  Google Scholar 

  • Jobling MG, Holmes RK (1990) Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites. Nucleic Acids Res 18:5315–5316

    CAS  PubMed  Google Scholar 

  • Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49:253–279

    Article  CAS  PubMed  Google Scholar 

  • Kim GJ, Kim HS (1998) Identification of the structural similarity in the functionally related amidohydrolases acting on the cyclic amide ring. Biochem J 330:295–302

    CAS  PubMed  Google Scholar 

  • Lai YC, Peng HL, Chang HY (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788–800

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics; A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 72–74, 438

  • Neuhard J, Kelln RA (1996) Biosynthesis and conversions of pyrimidines. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, pp 580–599

  • Neuhard J, Kelln RA, Stauning E (1986) Cloning and structural characterization of the Salmonella typhimurium pyrC gene encoding dihydroorotase. Eur J Biochem 157:335–342

    CAS  PubMed  Google Scholar 

  • Ornston LN, Stanier RY (1966) The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem 241:3776–3786

    CAS  PubMed  Google Scholar 

  • O’Donovan GA, Neuhard J (1970) Pyrimidine metabolism in microorganisms. Bacteriol Rev 34:278–343

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2000) Molecular cloning: a laboratory handbook, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schurr MJ, Vickrey JF, Kumar AP, Campbell AL, Cunin R, Benjamin RC, Shanley MS, O’Donovan GA (1995) Aspartate transcarbamoylase genes of Pseudomonas putida: requirement for an inactive dihydroorotase for assembly into the dodecameric holoenzyme. J Bacteriol 177:1751–1759

    CAS  PubMed  Google Scholar 

  • Schweizer HP (1991) EscherichiaPseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–112

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HP (1993) Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834

    CAS  PubMed  Google Scholar 

  • Schweizer HP, Hoang T (1995) An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15–22

    Article  CAS  PubMed  Google Scholar 

  • Semple KS, Silbert DF (1975) Mapping of the fabD locus for fatty acid biosynthesis in Escherichia coli. J Bacteriol 121:1036–1046

    CAS  PubMed  Google Scholar 

  • Shoaf WT, Jones ME (1971) Initial steps in pyrimidine synthesis in Ehrlich ascites carcinoma. Biochem Biophys Res Commun 45:796–802

    CAS  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791

    CAS  Google Scholar 

  • Stibitz S, Black W, Falkow S (1986) The construction of a cloning vector designed for gene replacement in Bordetella pertussis. Gene 50:133–140

    Article  CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Taylor WH, Taylor ML, Balch WE, Gilchrist PS (1976) Purification of properties of dihydroorotase, a zinc-containing metalloenzyme in Clostridium oroticum. J Bacteriol 127:863–873

    CAS  PubMed  Google Scholar 

  • Thoden JB, Phillips GN, Neal TM, Raushel FM, Holden HM (2001) Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center. Biochemistry 40:6989–6997

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Vickrey JF (1993) Characterization of the aspartate transcarbamoylase in Pseudomonas aeruginosa. PhD thesis. University of North Texas, Denton

  • Washabaugh MW, Collins KD (1984) Dihydroorotase from Escherichia coli. Purification and characterization. J Biol Chem 259:3293–3298

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann BH, Kemling NM, Evans DR (1995) Function of conserved histidine residues in mammalian dihydroorotase. Biochemistry 34:7038–7046

    CAS  PubMed  Google Scholar 

  • Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John Houghton and Tim Brown for kind assistance with DNA sequence analysis of pyrC, and the members of our laboratory for helpful discussions. We also appreciate the helpful suggestions and comments on the manuscript made by Tim Hoover, Rod Kelln and two anonymous reviewers. This work was supported by a faculty research grant from the College of Arts and Sciences at UNT (G.A.O’D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayna M. Brichta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brichta, D.M., Azad, K.N., Ralli, P. et al. Pseudomonas aeruginosa dihydroorotases: a tale of three pyrCs . Arch Microbiol 182, 7–17 (2004). https://doi.org/10.1007/s00203-004-0687-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0687-z

Keywords

Navigation