Skip to main content

Advertisement

Log in

Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effect of sublethal hydrostatic pressure on the transcriptome of Lactobacillus sanfranciscensis was determined using a shot-gun-microarray. Among the 750 spots that passed quality analysis 42 genes were induced, while six were repressed when cells were incubated at 45 MPa for 30 min. The nature of genes and their differential expression clearly indicate cellular efforts to counteract a decrease in translational capacity. The majority of high pressure affected genes were found to encode either translation factors (EF-G, EF-TU), ribosomal proteins (S2, L6, L11), genes changing translational accuracy or molecular chaperones (GroEL, ClpL). These data agree with previously reported effects observed in in vitro studies as well as with physiological and proteomic data. This study provides in vivo evidence to identify ribosomes and impaired translation among primary targets for high pressure treatment. The observed induction of heat as well as cold shock genes (e.g. hsp60, gyrA) may be explained as a result of high pressure affected protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aertsen A, Vanoirbeek K, De Spiegeleer P, Sermon J, Hauben K, Farewell A, Nystrom T, Michiels CW (2004) Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 70(5):2660–2666

    Article  PubMed  CAS  Google Scholar 

  • Albright LJ (1969) Alternate pressurization-depressurization effects on growth and net protein, RNA and DNA synthesis by Escherichia coli and Vibrio marinus. Can J Microbiol 15:1237–1240

    PubMed  CAS  Google Scholar 

  • Bregeon D, Colot V, Radman M, Taddei F (2001) Translational misreading: a tRNA modification counteracts a +2 ribosomal frameshift. Genes Dev 15(17): 2295–2306

    Article  PubMed  CAS  Google Scholar 

  • Broeze RJ, Solomon CJ, Pope DH (1978) Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J Bacteriol 134:861–874

    PubMed  CAS  Google Scholar 

  • Cabedo H, Macian F, Villarroya M, Escudero JC, Martinez-Vicente M, Knecht E, Armengod ME (1999) The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J 18:7063–7076

    Article  PubMed  CAS  Google Scholar 

  • Caldas T, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275(2):855–860

    Article  PubMed  CAS  Google Scholar 

  • Caldon CE, Yoong P, March PE (2001) Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41(2):289–297

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    Article  PubMed  CAS  Google Scholar 

  • Daigle DM, Rossi L, Berghuis AM, Aravind L, Koonin EV, Brown ED (2002) YjeQ, an essential, conserved, uncharacterized protein from Escherichia coli, is an unusual GTPase with circularly permuted G-motifs and marked burst kinetics. Biochemistry 41:11109–11117

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    Article  PubMed  CAS  Google Scholar 

  • Drews O, Weiss W, Reil G, Parlar H, Wait R, Görg A (2002) High pressure effects step-wise altered protein expression in Lactobacillus sanfranciscensis. Proteomics 2:765–774

    Article  PubMed  CAS  Google Scholar 

  • Fernandes PM, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160

    Article  PubMed  CAS  Google Scholar 

  • Farewell A, Neidhardt FC (1998) Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol 180:4704–4710

    PubMed  CAS  Google Scholar 

  • Friedman H, Lu P, Rich A (1969) An in vivo block in the initiation of protein synthesis. Cold Spring Harb Symp Quant Biol 34:255–260

    PubMed  CAS  Google Scholar 

  • Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527–539

    Article  PubMed  CAS  Google Scholar 

  • Hardon MJ, Albright LJ (1974) Hydrostatic pressure effects on several stages of protein synthesis in Escherichia coli. Can J Microbiol 20:359–365

    Article  PubMed  CAS  Google Scholar 

  • Hörmann S, Scheyhing C, Pavlovic M, Ehrmann M, Vogel RF (2005) Comparative proteome approach to characterize the high pressure stress response of Lactobacillus sanfranciscensis DSM 20451T, Proteomics, submitted

  • Ishii A, Oshima T, Sato T, Nakasone K, Mori H, Kato C (2005) Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Krüger MK, Pedersen S, Hagervall TG, Sørensen MA (1998) The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 284:621–631

    Article  PubMed  Google Scholar 

  • Krüger MK, Sørensen MA (1998) Aminoacylation of hypomodified tRNAGlu in vivo. J Mol Biol 284:609–620

    Article  PubMed  Google Scholar 

  • Landau JV, Pope DH (1980) Recent advances in the area of barotolerant protein synthesis in bacteria and implications concerning barotolerant and barophilic growth. Adv Aquat Microbiol 2:249–276

    Google Scholar 

  • Melancon P, Tapprich WE, Brakier-Gingras L (1992) Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading. J Bacteriol 174:7896–7901

    PubMed  CAS  Google Scholar 

  • Moll I, Grill S, Grundling A, Blasi U (2002) Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44:1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Pope DH, Berger LR (1973) Inhibition of metabolism by hydrostatic pressure, what limits microbial growth? Arch Microbiol 93:367–370

    CAS  Google Scholar 

  • Pope DH, Smith WP, Swartz RW, Landau JV (1975) Role of bacterial ribosomes in barotolerance. J Bacteriol 121:664–669

    PubMed  CAS  Google Scholar 

  • Potapov AP, Subramanian AR (1992) Effect of E. coli ribosomal protein S1 on the fidelity of the translational elongation step: reading and misreading of poly(U) and poly(dT). Biochem Int 27:745–753

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Scheyhing CH, Hörmann S, Ehrmann MA, Vogel RF (2004) Barotolerance is inducible by preincubation under hydrostatic pressure, cold-, osmotic- and acid-stress conditions in Lactobacillus sanfranciscensis DSM 20451T. Lett Appl Microbiol 39:284–289

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JR, Landau JV (1972a) Hydrostatic pressure effects on Escherichia coli: site of inhibition of protein synthesis. J Bacteriol 109:945–948

    PubMed  CAS  Google Scholar 

  • Schwarz JR, Landau JV (1972b) Inhibition of cell-free protein synthesis by hydrostatic pressure. J Bacteriol 112:1222–1227

    PubMed  CAS  Google Scholar 

  • Smith W, Pope D, Landau JV (1975) Role of bacterial ribosome subunits in barotolerance. J Bacteriol 124:582–584

    PubMed  CAS  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  PubMed  CAS  Google Scholar 

  • Tanner NK, Linder P (2001) DEAD/H box RNA helicases: from genetic motors to specific dissociation functions. Mol Cell 8:251–262

    Article  PubMed  CAS  Google Scholar 

  • Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87:5589–5593

    Article  PubMed  CAS  Google Scholar 

  • Welch TJ, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175:7170–7177

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (FOR 358/2) and the Ernst BÖCKER GmbH& Co. KG, Minden, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias A. Ehrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlovic, M., Hörmann, S., Vogel, R.F. et al. Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis . Arch Microbiol 184, 11–17 (2005). https://doi.org/10.1007/s00203-005-0021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0021-4

Keywords

Navigation