Skip to main content
Log in

Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Phenol- and p-cresol-degrading pseudomonads isolated from phenol-polluted water were analysed by the sequences of a large subunit of multicomponent phenol hydroxylase (LmPH) and catechol 2,3-dioxygenase (C23O), as well as according to the structure of the plasmid-borne pheBA operon encoding catechol 1,2-dioxygenase and single component phenol hydoxylase. Comparison of the carA gene sequences (encodes the small subunit of carbamoylphosphate synthase) between the strains showed species- and biotype-specific phylogenetic grouping. LmPHs and C23Os clustered similarly in P. fluorescens biotype B, whereas in P. mendocina strains strong genetic heterogeneity became evident. P. fluorescens strains from biotypes C and F were shown to possess the pheBA operon, which was also detected in the majority of P. putida biotype B strains which use the ortho pathway for phenol degradation. Six strains forming a separate LmPH cluster were described as the first pseudomonads possessing the Mop type LmPHs. Two strains of this cluster possessed the genes for both single and multicomponent PHs, and two had genetic rearrangements in the pheBA operon leading to the deletion of the pheA gene. Our data suggest that few central routes for the degradation of phenolic compounds may emerge in bacteria as a result of the combination of genetically diverse catabolic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein-due binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cammarano P, Gribaldo S, Johann A (2002) Updating carbamoylphosphate synthase (CPS) phylogenies: occurrence and phylogenetic identity of archaeal CPS genes. J Mol Evol 55:153–160

    Article  PubMed  CAS  Google Scholar 

  • Connors MA, Barnsley EA (1982) Naphthalene plasmids in pseudomonads. J Bacteriol 149:1096–1101

    PubMed  CAS  Google Scholar 

  • Dagley S, Patel MD (1957) Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem J 66:227–233

    PubMed  CAS  Google Scholar 

  • Ehrt S, Schirmer F, Hillen W (1995) Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in Acinetobacter calcoaceticus NCIB8250. Mol Microbiol 18:13–20

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123

    Article  PubMed  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:1–8

    Article  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937

    PubMed  CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  PubMed  CAS  Google Scholar 

  • Hegeman GD (1966) Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol 91:1140–1154

    PubMed  CAS  Google Scholar 

  • Heinaru E, Truu J, Stottmeister U, Heinaru A (2000) Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol Ecol 31:195–205

    Article  PubMed  CAS  Google Scholar 

  • Heinaru E, Viggor S, Vedler E, Truu J, Merimaa M, Heinaru A (2001) Reversible accumulation of p-hydroxybenzoate and catechol determines the sequential decomposition of phenolic compounds in mixed substrate cultivations in pseudomonads. FEMS Microbiol Ecol 37:79–89

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  PubMed  CAS  Google Scholar 

  • Hilario E, Buckley TR, Young JM (2004) Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie van Leeuwenhoek 86:51–64

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  PubMed  CAS  Google Scholar 

  • Junca H, Pieper DH (2003) Amplified functional DNA restriction analysis to determine catechol 2,3-dioxygenase gene diversity in soil bacteria. J Microbiol Methods 55:697–708

    Article  PubMed  CAS  Google Scholar 

  • Kallastu A, Hõrak R, Kivisaar M (1998) Identification and characterization of IS1411, a new insertion sequence which causes trancriptional activation of the phenol degradation genes in Pseudomonas putida. J Bacteriol 180:5306–5312

    PubMed  CAS  Google Scholar 

  • Kasak L, Hõrak R, Nurk A, Talvik K, Kivisaar M (1993) Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J Bacteriol 175:8038–8042

    PubMed  CAS  Google Scholar 

  • Kivisaar M, Hõrak R, Kasak L, Heinaru A, Habicht J (1990) Selection of independent plasmids determining phenol degradation in Pseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid 24:25–36

    Article  PubMed  CAS  Google Scholar 

  • Kivisaar M, Kasak L, Nurk A (1991) Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Gene 98:15–20

    Article  PubMed  CAS  Google Scholar 

  • Kukor JJ, Olsen RH (1990) Molecular cloning, characterization and regulation of Pseudomonas pickettii PKO1, gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1c. J Bacteriol 172:4584–4630

    Google Scholar 

  • Kukor JJ, Olsen RH (1991) Genetic organization and regulation of a meta-cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol and cresols by Pseudomonas picketii. J Bacteriol 173:4587–4594

    PubMed  CAS  Google Scholar 

  • Lawson FS, Charlebois RL, Dillon J-AR (1996) Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol Biol Evol 13:970–977

    PubMed  CAS  Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305

    Article  PubMed  CAS  Google Scholar 

  • van der Meer JR, Sentchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254

    Article  PubMed  Google Scholar 

  • Notomista E, Lahm A, Donato AD, Tramontano A (2003) Evolution of bacterial and archaeal multicomponent monooxygenases. J Mol Evol 56:435–445

    Article  PubMed  CAS  Google Scholar 

  • Nozaki M, Kotani S, Ono K, Senoh S (1970) Metapyrocatechase. III. Substrate specificity and mode of ring fission. Biochim Biophys Acta 220:213–223

    PubMed  CAS  Google Scholar 

  • Nurk A, Kasak L, Kivisaar M (1991) Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001 expression in Escherichia coli and Pseudomonas putida. Gene 102:13–18

    Article  PubMed  CAS  Google Scholar 

  • Peters M, Heinaru E, Talpsep E, Wand H, Stottmeister U, Heinaru A, Nurk A (1997) Acquisition of a deliberately introduced phenol degradation operon, pheBA, by different indigenous Pseudomonas species. Appl Environ Microbiol 63:4899–4906

    PubMed  CAS  Google Scholar 

  • Peters M, Tomikas A, Nurk A (2004) Organization of the horizontally transferred pheBA operon and its adjacent genes in the genomes of eight indigenous Pseudomonas strains. Plasmid 52:230–236

    Article  PubMed  CAS  Google Scholar 

  • Powlowski J, Shingler V (1990) In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. Strain CF600. J Bacteriol 172:6834–6840

    PubMed  CAS  Google Scholar 

  • Saitaou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biopl Evol 4:406–425

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shingler V, Franklin FCH, Tsuda M, Holroyd D, Bagdasarian M (1989) Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600. J Gen Microbiol 135:1083–1092

    PubMed  CAS  Google Scholar 

  • Shingler V, Powlowski J, Marklund U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174:711–724

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396–4402

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiol 146:2385–2394

    CAS  Google Scholar 

Download references

Acknowledgments

The Estonian Science Foundation, Grant 5682, and the Institute of Molecular and Cell Biology, University of Tartu, supported this research. We gratefully acknowledge Drs. T. Alamäe and J. Truu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merike Merimaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merimaa, M., Heinaru, E., Liivak, M. et al. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes. Arch Microbiol 186, 287–296 (2006). https://doi.org/10.1007/s00203-006-0143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0143-3

Keywords

Navigation