Skip to main content

Advertisement

Log in

Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The transcriptional regulator of landomycin A biosynthesis encoded by lanI gene has been inactivated within the chromosome of Streptomyces cyanogenus S136. The obtained mutant strain did not produce landomycin A and its known intermediates. Loss of landomycin A production caused significant changes in morphology of the lanI deficient strain. RT-PCR analysis confirmed complete cessation of transcription of certain lan genes, including lanJ (encoding putative proton dependent transporter) and lanK (presumably involved in lanJ expression regulation). Introduction of either lanI or lndI [lanI homologue controlling landomycin E biosynthesis in Streptomyces globisporus 1912, both encoding Streptomyces antibiotic regulatory proteins (SARPs)] restored landomycin A production in the mutant strain. Chimeric constructs ladI and ladR were generated by exchanging the DNA sequences corresponding to N- and C-terminal parts of LndI and LanI. None of these genes were able to activate the production of landomycins in regulatory mutants of S. cyanogenus and S. globisporus. Nevertheless, the production of novel unidentified compound was observed in the case of S. cyanogenus harboring ladI gene. Various genes encoding SARPs have been expressed in S. globisporus and S. cyanogenus regulatory mutants and the results of these complementation experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3 
Fig. 4

Similar content being viewed by others

References

  • Aigle B, Pang X, Decaris B, Leblond P (2005) Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. J Bacteriol 187:2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Arias P, Fernandez-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    PubMed  CAS  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    Article  PubMed  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Nagajara Rao R, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  PubMed  CAS  Google Scholar 

  • Blondelet-Rouault M-H, Weiser Y, Lebrihi A, Branny P, Pernodet JL (1997) Antibiotic resistance gene cassettes derived from the Ω interposon for use in Escherichia coli and Streptomyces. Gene 190:315–317

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Moreno MA, Caballero JA, Hopwood DA, Malpartida F (1991) The act-cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bld-tRNA gene of Streptomyces. Cell 66:769–780

    Article  PubMed  CAS  Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  PubMed  CAS  Google Scholar 

  • Guilfoile PG, Hutchinson CR (1992) The Streptomyces glaucescens TcmR protein represses transcription of the divergently oriented tcmR and tcmA genes by binding to an intergenic operator region. J Bacteriol 174:3659–3666

    PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  • Harrison-McMonagle E, Martinez-Hackert E, Stock AM (1999) Orientation of OmpR monomers within an OmpR:DNA complex determined by DNA affinity cleaving. J Mol Biol 285:555–566

    Article  PubMed  CAS  Google Scholar 

  • Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Lombo F, Brana AF, Mendez C, Salas JA (1999) The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181:642–647

    PubMed  CAS  Google Scholar 

  • Lombo F, Brana AF, Salas JA, Mendez C (2004) Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem 5:1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Luzhetskyy A, Fedoryshyn M, Hoffmeister D, Bechthold A, Fedorenko V (2002) A gene cloning system for Streptomyces cyanogenus 136. Visn Lviv Univ Ser Biol 29:62–69

    Google Scholar 

  • Luzhetskyy A, Taguchi T, Fedoryshyn M, Durr C, Wohlert SE, Novikov V, Bechthold A (2005) LanGT2 catalyzes the first glycosylation step during landomycin A biosynthesis. Chembiochem 6:1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Luzhetskyy A, Fedoryshyn M, Gromyko O, Ostash B, Rebets Y, Bechthold A, Fedorenko V (2006) IncP plasmids are most effective in mediating conjugation between Escherichia coli and streptomycetes. Genetika 42:595–601

    PubMed  CAS  Google Scholar 

  • Martinez-Hackert E, Stock AM (1997) The DNA-binding domain of OmpR: crystal structures of a winged-helix transcription factor. Structure 5:109–124

    Article  PubMed  CAS  Google Scholar 

  • von Mulert U, Luzhetskyy A, Hofmann C, Mayer A, Bechthold A (2004) Expression of the landomycin biosynthetic gene cluster in a PKS mutant of Streptomyces fradiae is dependent on the coexpression of a putative transcriptional activator gene. FEMS Microbiol Lett 230:91–97

    Article  Google Scholar 

  • Muth G, Nussbaumer B, Wohlleben W, Puhler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes. Mol Gen Genet 6:1–8

    Google Scholar 

  • Novakova R, Homerova D, Feckova L, Kormanec J (2005) Characterization of a regulatory gene essential for the production of the angucycline-like polyketide antibiotic auricin in Streptomyces aureofaciens CCM 3239. Microbiology 151:2693–2706

    Article  PubMed  CAS  Google Scholar 

  • Ostash I, Ostash B, Bechthold A, Fedorenko V, Walker S (2006) LanK: a transcriptional regulator of the landomycin exporter gene in Streptomyces cyanogenus S136. In: Procceedings of 12-th annual Boston bacterial meeting, Tufts University School of Medicine, Boston, p 41

  • Ostash I, Ostash B, Walker S, Fedorenko V (2007) Proton-dependent transporter gene lndJ confers resistance to landomycin E in Streptomyces globisporus. Rus J Genet 8:1–5

    Google Scholar 

  • Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez C, Salas JA, Bechthold A, Fedorenko V (2003) Production of landomycins in strains Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222:149–153

    Article  PubMed  CAS  Google Scholar 

  • Rebets Y, Ostash B, Luzhetskyy A, Kushnir S, Fukuhara M, Bechthold A, Nashimoto M, Nakamura T, Fedorenko V (2005) DNA binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology 151:191–200

    Article  Google Scholar 

  • Rebets Y, Ostash B, Fukuhara M, Nakamura T, Fedorenko V (2006) Expression of regulatory protein LndI for landomycin E production in Streptomyces globisporus 1912 is controlled by the availability of tRNA for rare UUA codon. FEMS Microbiol Lett 256:30–37

    Article  PubMed  CAS  Google Scholar 

  • Rohr J, Thiericke R (1992) Angucycline group antibiotics. Nat Prod Rep 9:103–137

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New-York

    Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein DnrI. Mol Microbiol 44:449–460

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Grimm A, Zhang Y-X, Hutchinson CR (1995) Purification and characterization of the DNA-binding protein DnrI, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22:801–813

    Article  Google Scholar 

  • Trefzer A, Pelzer S, Schimana J, Stockert S, Bihlmaier C, Fiedler HP, Welzel K, Vente A, Bechthold A (2002) Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob Agents Chemother 46:1174–1182

    Article  PubMed  CAS  Google Scholar 

  • Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin A biosynthesis. FEMS Microbiol Lett 170:381–387

    Article  PubMed  CAS  Google Scholar 

  • Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appear to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1177–1184

    Article  Google Scholar 

  • Yang K, Han L, He J, Wang L, Vining LC (2001) A repressor–response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 279:165–173

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. K. F. Chater and Prof. M. J. Bibb (JIC, Norwich, UK), Prof. L. C. Vining (Dalhousie University, Halifax, Canada), Prof. J. A. Salas (Oviedo University, Oviedo, Spain), Prof. J.-L. Pernodet (University Paris-Sud, Orsay, France) for gift of plasmids and strains. The work was supported by DAAD fellowship A/05/28943 to Y. Rebets. The work in Prof. V. Fedorenko’s lab was supported by grant Bg35F from the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Fedorenko.

Additional information

Communicated by Jean-Luc Pernodet.

Y. Rebets and L. Dutko have contributed equally to this work.

Electronic supplementary material

203_2007_299_MOESM1_ESM.jpg

S. 1 Scanning electronic microscope images (left, magnification ×5,000) and lawn culture (right) of S. cyanogenus S136 (A) and ΔlanI7 (B) strains (JPG 1.79 mb)

203_2007_299_MOESM2_ESM.jpg

S. 2 TLC chromatogram of secondary metabolites produced by S. cyanogenus S136 (1) and S. cyanogenus ΔlanI7pSladI+ (2). Landomycin A (LA) and new unidentified compound produced by S. cyanogenus ΔlanI7pSladI+ strain (NC) are indicated by arrows (JPG 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebets, Y., Dutko, L., Ostash, B. et al. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol 189, 111–120 (2008). https://doi.org/10.1007/s00203-007-0299-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0299-5

Keywords

Navigation