Skip to main content

Advertisement

Log in

Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) are anaerobes readily found in oxic–anoxic interfaces. Multiple defense pathways against oxidative conditions were identified in these organisms and proposed to be differentially expressed under different concentrations of oxygen, contributing to their ability to survive oxic conditions. In this study, Desulfovibrio vulgaris Hildenborough cells were exposed to the highest concentration of oxygen that SRB are likely to encounter in natural habitats, and the global transcriptomic response was determined. Three hundred and seven genes were responsive, with cellular roles in energy metabolism, protein fate, cell envelope and regulatory functions, including multiple genes encoding heat shock proteins, peptidases and proteins with heat shock promoters. Of the oxygen reducing mechanisms of D. vulgaris only the periplasmic hydrogen-dependent mechanism was up-regulated, involving the [NiFeSe] hydrogenase, formate dehydrogenase(s) and the Hmc membrane complex. The oxidative defense response concentrated on damage repair by metal-free enzymes. These data, together with the down-regulation of the ferric uptake regulator operon, which restricts the availability of iron, and the lack of response of the peroxide-sensing regulator operon, suggest that a major effect of this oxygen stress is the inactivation and/or degradation of multiple metalloproteins present in D. vulgaris as a consequence of oxidative damage to their metal clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

D :

Desulfovibrio

PMF:

Proton motive force

ROS:

Reactive oxygen species

SRB:

Sulfate-reducing bacteria

References

  • Abreu IA, Xavier AV, LeGall J, Cabelli DE, Teixeira M (2002) Superoxide scavenging by neelaredoxin: dismutation and reduction activities of anaerobes. J Biol Inorg Chem 7:668–674

    Article  PubMed  CAS  Google Scholar 

  • Almeida CC, Romao CV, Lindley PF, Teixeira M, Saraiva LM (2006) The role of the hybrid-cluster protein in oxidative stress defense. J Biol Chem 281:32445–32450

    Article  PubMed  CAS  Google Scholar 

  • Ariza RR, Cohen SP, Bachhawat N, Levy SB, Demple B (1994) Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol 176:143–148

    PubMed  CAS  Google Scholar 

  • Baumgarten A, Redenius I, Kranczoch J, Cypionka H (2001) Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol 176:306–309

    Article  PubMed  CAS  Google Scholar 

  • Bender KS et al (2007) Analysis of ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 73:5389–5400

    Article  PubMed  CAS  Google Scholar 

  • Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD (2000) The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 182:4129–4136

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu MY, Legall J, Fareleira P, Santos H, Xavier AV (1993) Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur J Biochem 216:443–448

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR et al (2006) Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:1817–1828

    Article  PubMed  CAS  Google Scholar 

  • Clark ME et al (2006) Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol 72:5578–5588

    Article  PubMed  CAS  Google Scholar 

  • Coulter ED, Shenvi NV, Kurtz DM Jr (1999) NADH peroxidase activity of rubrerythrin. Biochem Biophys Res Commun 255:317–323

    Article  PubMed  CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    Article  PubMed  CAS  Google Scholar 

  • Darwin AJ (2005) The phage-shock-protein response. Mol Microbiol 57:621–628

    Article  PubMed  CAS  Google Scholar 

  • Deckers HM, Voordouw G (1996) The dcr gene family of Desulfovibrio: implications from the sequence of dcrH and phylogenetic comparison with other mcp genes. Antonie Van Leeuwenhoek 70:21–29

    Article  PubMed  CAS  Google Scholar 

  • Dolla A, Fu R, Brumlik JM, Voordouw G (1992) Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli. J Bacteriol 174:1726–1733

    PubMed  CAS  Google Scholar 

  • Dolla A, Pohorelic BK, Voordouw JK, Voordouw G (2000) Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol 174:143–151

    Article  PubMed  CAS  Google Scholar 

  • Dolla A, Fournier M, Dermoun Z (2006) Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126:87–100

    Article  PubMed  CAS  Google Scholar 

  • dos Santos WG, Pacheco I, Liu M-Y, Teixeira M, Xavier AV, LeGall J (2000) Purification and characterization of an iron superoxide dismutase and a catalase from the sulphate reducing bacterium Desulfovibrio gigas. J Bacteriol 182:796–804

    Article  PubMed  CAS  Google Scholar 

  • Eschemann A, Kuhl M, Cypionka H (1999) Aerotaxis in Desulfovibrio. Environ Microbiol 1:489–494

    Article  PubMed  CAS  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    PubMed  CAS  Google Scholar 

  • Fournier M et al (2003) Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 185:71–79

    Article  PubMed  Google Scholar 

  • Fournier M, Dermoun Z, Durand MC, Dolla A (2004) A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 279:1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A (2006) Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis. Biochimie 88:85–94

    Article  PubMed  CAS  Google Scholar 

  • Fu R, Wall JD, Voordouw G (1994) DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol 176:344–350

    PubMed  CAS  Google Scholar 

  • Fuangthong M, Herbig AF, Bsat N, Helmann JD (2002) Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian EC, Henry YA (1977) An iron containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie 59:153–161

    Article  PubMed  CAS  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950

    Article  PubMed  CAS  Google Scholar 

  • He Q et al (2006) Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis. Appl Environ Microbiol 72:4370–4381

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg JF et al (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Crielaard W, Tommassen J (1996) Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the proton motive force under stress conditions. EMBO J 15:162–171

    PubMed  CAS  Google Scholar 

  • Krekeler D, Sigalevich P, Teske A, Cypionka H, Cohen Y (1997) Sulfate-reducing bacterium form the oxic layer of a microbial mat from Solar lake (Sinai), Desulfovibrio sp. nov. Arch Microbiol 167:369–375

    Article  CAS  Google Scholar 

  • Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96

    Article  CAS  Google Scholar 

  • Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M (2001) The “strict anaerobe” Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496:40–43

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Lobo SAL, Melo AMP, Carita JN, Teixeira M, Saraiva LM (2007) The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett 581:433–436

    Article  PubMed  CAS  Google Scholar 

  • Lombard M, Fontecave M, Touati D, Niviere V (2000) Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem 275:115–121

    Article  PubMed  CAS  Google Scholar 

  • Louro RO (2007) Proton thrusters: overview of the structural and functional features of soluble tetrahaem cytochromes c 3. J Biol Inorg Chem 12:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J (2005) Roles of methionine sulfoxide reductases in antioxidant defense, protein regulation and survival. Curr Pharm Des 11:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Moura I et al (1990) Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center. J Biol Chem 265:21596–21602

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A et al (2006) Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 188:4068–4078

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A et al (2007) Cell wide response to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010

    Article  PubMed  CAS  Google Scholar 

  • Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The comprehensive microbial resource. Nucleic Acids Res 29:123–125

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Wolbert RB, Portier GL, Verhagen MF, Hagen WR (1993) Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem 212:237–245

    Article  PubMed  CAS  Google Scholar 

  • Pires RH, Lourenço AI, Morais F, Teixeira M, Xavier AV, Pereira IA (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605:67–82

    Article  PubMed  CAS  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex—a membrane-bound redox complex involved in sulfate respiration. Biochemistry 45:249–262

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rabus R, Hansen T, Widdel F (2000) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  • Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90

    Article  PubMed  Google Scholar 

  • Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G (1993) The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699–4711

    PubMed  CAS  Google Scholar 

  • Scholten JCM, Culley DE, Nie L, Munn LC, Brockman FJ, Zhang W (2007) Development and assessment of whole-genome oligonucleotide microarrays to analyze an anaerobic microbial community and its responses to oxidative stress. Biochem Biophys Res Commun 358:571–577

    Article  PubMed  CAS  Google Scholar 

  • Sigalevich P, Meshorer E, Helman Y, Cohen Y (2000) Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation. Appl Environ Microbiol 66:5005–5012

    Article  PubMed  CAS  Google Scholar 

  • Valente FM et al (2005) Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J Biol Inorg Chem 10:667–682

    Article  PubMed  CAS  Google Scholar 

  • Valente FMA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC (2006) Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:3228–3235

    Article  PubMed  CAS  Google Scholar 

  • Voordouw JK, Voordouw G (1998) Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 64:2882–2887

    PubMed  CAS  Google Scholar 

  • Wall JD, Krumholtz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  PubMed  CAS  Google Scholar 

  • Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res 17:721–735

    CAS  Google Scholar 

  • Wiegert T, Schumann W (2003) Analysis of a DNA-binding motif of the Bacillus subtilis HrcA repressor protein. FEMS Microbiol Lett 223:101–106

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Kurtz DM Jr, Ai J, Sanders-Loehr J (2000) A hemerythrin-like domain in a bacterial chemotaxis protein. Biochemistry 39:5117–5125

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  PubMed  CAS  Google Scholar 

  • Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93:259–266

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Culley DE, Hogan M, Vitiritti L, Brockman FJ (2006) Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie Van Leeuwenhoek 90:41–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia grants PPCDT/2004/QUI/55690 and PTDC/QUI/68368/2006, co-funded by FEDER program, and by the United States Department of Energy under Genomics:GTL program through the Virtual Institute of Microbial Stress and Survival (http://vimss.lbl.gov), Office of Biological and Environmental Research, Office of Science. PMP was a recipient of the FCT PhD grant SFRH/BD/5231/2001

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo O. Louro.

Additional information

Communicated by Friedrich Widdel.

António V. Xavier—deceased May 2006.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P.M., He, Q., Xavier, A.V. et al. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions. Arch Microbiol 189, 451–461 (2008). https://doi.org/10.1007/s00203-007-0335-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0335-5

Keywords

Navigation