Skip to main content
Log in

Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

SecA is a central component of the bacterial Sec preprotein translocase. Besides the housekeeping SecA (SecA1), some mostly pathogenic Gram-positive bacteria possess an accessory SecA (SecA2) that is involved in the export of a few substrates only. Here we show that neither of the two secA homologous genes present in the genome of the non-pathogenic bacterium Corynebacterium glutamicum can be deleted, unless a copy of the respective gene is provided in trans on a plasmid. This finding is in marked contrast to all other cases examined so far making C. glutamicum the first reported bacterium possessing two essential SecA proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abe S, Takayama KI, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13:279–301

    Article  Google Scholar 

  • Bellmann A, Vrljic M, Patek M, Sahm H, Krämer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology (UK) 147:1765–1774

    CAS  Google Scholar 

  • Bensing BA, Sullam PM (2002) An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Müller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426–3432

    Article  PubMed  CAS  Google Scholar 

  • Braunstein M, Brown AM, Kurtz S, Jacobs Jr WR (2001) Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183:6979–6990

    Article  PubMed  CAS  Google Scholar 

  • Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs Jr WR (2003) SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48:453–464

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Wu H, Fives-Taylor PM (2004) Investigating the role of secA2 in secretion and glycosylation of a fimbrial adhesin in Streptococcus parasanguis FW213. Mol Microbiol 53:843–856

    Article  PubMed  CAS  Google Scholar 

  • de Keyzer J, van der Does C, Driessen AJM (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60:2034–2052

    Article  PubMed  CAS  Google Scholar 

  • Gibbons S, Wolschendorf F, Abshire M, Niederweis M, Braunstein M (2007) Identification of two Mycobacterium smegmatis lipoproteins exported by a SecA2-dependent pathway. J Bacteriol 189:5090–5100

    Article  PubMed  CAS  Google Scholar 

  • Kurtz S, McKinnon KP, Runge MS, Ting JP-Y, Braunstein M (2006) The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect Immun 74:6855–6864

    Article  PubMed  CAS  Google Scholar 

  • Lenz LL, Portnoy DA (2002) Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol Microbiol 45:1043–1056

    Article  PubMed  CAS  Google Scholar 

  • Lenz LL, Mohammadi S, Geissler A, Portnoy DA (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100:12432–12437

    Article  PubMed  CAS  Google Scholar 

  • Mitra K, Frank J, Driessen AJM (2006) Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nature Struct Mol Biol 13:957–964

    Article  CAS  Google Scholar 

  • Osborne AR, Rapoport TA, van den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schäfer A, Schwarzer A, Kalinowski J, Pühler A (1994) Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13022 and analysis of its role in intergeneric conjugation with Escherichia coli. J Bacteriol 176:7309–7319

    PubMed  Google Scholar 

  • Schiebel E, Driessen AJM, Hartl FU, Wickner W (1991) ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64:927–939

    Article  PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • van Wely KHM, Swaving J, Freudl R, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

    Article  PubMed  Google Scholar 

  • von Heijne G (1998) Life and death of a signal peptide. Nature 396:111–112

    Article  CAS  Google Scholar 

  • Vrontou E, Economou A (2004) Structure and function of SecA, the preprotein translocase nanomotor. Biochim Biophys Acta 1694:67–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Astrid Bida for excellent technical assistance and H. Sahm for his continuous support. M. Caspers was supported by the Graduiertenkolleg GRK 57/3-03 “Molekulare Physiologie: Stoff- und Energieumwandlung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Freudl.

Additional information

Communicated by Arnold Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caspers, M., Freudl, R. Corynebacterium glutamicum possesses two secA homologous genes that are essential for viability. Arch Microbiol 189, 605–610 (2008). https://doi.org/10.1007/s00203-008-0351-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0351-0

Keywords

Navigation