Skip to main content

Advertisement

Log in

Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli can both oxidize hydrogen and reduce protons. These activities involve three distinct [NiFe]-hydrogenases, termed Hyd-1, Hyd-2, and Hyd-3, each minimally comprising heterodimers of a large subunit, containing the [NiFe] active site, and a small subunit, bearing iron–sulfur clusters. Dihydrogen-oxidizing activity can be determined using redox dyes like benzyl viologen (BV); however, it is unclear whether electron transfer to BV occurs directly at the active site, or via an iron–sulfur center in the small subunit. Plasmids encoding Strep-tagged derivatives of the large subunits of the three E. coli [NiFe]-hydrogenases restored activity of the respective hydrogenase to strain FTD147, which carries in-frame deletions in the hyaB, hybC, and hycE genes encoding the large subunits of Hyd-1, Hyd-2, and Hyd-3, respectively. Purified Strep-HyaB was associated with the Hyd-1 small subunit (HyaA), and purified Strep-HybC was associated with the Hyd-2 small subunit (HybO), and a second iron–sulfur protein, HybA. However, Strep-HybC isolated from a hybO mutant had no other associated subunits and lacked BV-dependent hydrogenase activity. Mutants deleted separately for hyaA, hybO, or hycG (Hyd-3 small subunit) lacked BV-linked hydrogenase activity, despite the Hyd-1 and Hyd-2 large subunits being processed. These findings demonstrate that hydrogenase-dependent reduction of BV requires the small subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi JM, Campbell LL (1961) Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J Bacteriol 82:927–932

    PubMed  CAS  Google Scholar 

  • Ballantine SP, Boxer DH (1985) Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163:454–459

    PubMed  CAS  Google Scholar 

  • Ballantine SP, Boxer DH (1986) Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284

    Article  PubMed  CAS  Google Scholar 

  • Begg YA, Whyte JN, Haddock BA (1977) The identification of mutants of Escherichia coli deficient in formate dehydrogenase and nitrate reductase activities using dye indicator plates. FEMS Microbiol Lett 2:47–50

    Article  CAS  Google Scholar 

  • Blokesch M, Magalon A, Böck A (2001) Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1, 2, and 3 from Escherichia coli. J Bacteriol 183:2817–2822

    Article  PubMed  CAS  Google Scholar 

  • Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microbiol Physiol 51:1–71

    Article  Google Scholar 

  • Böhm R, Sauter M, Böck A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243

    Article  PubMed  Google Scholar 

  • Casadaban M, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • De Lacey AL, Santamaria E, Hatchikian EC, Fernandez VM (2000) Kinetic characterization of Desulfovibrio gigas hydrogenase upon selective chemical modification of amino acid groups as a tool for structure-function relationships. Biochim Biophys Acta 1481:371–380

    Google Scholar 

  • Dubini A, Pye RL, Jack RL, Palmer T, Sargent F (2002) How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydr Energy 27:1413–1420

    Article  CAS  Google Scholar 

  • Forzi L, Sawers RG (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20:567–578

    Article  Google Scholar 

  • Gitlitz PH, Krasna AI (1975) Structural and catalytic properties of hydrogenase from Chromatium. Biochemistry 14:2561–2568

    Article  PubMed  CAS  Google Scholar 

  • Hormann K, Andreesen JR (1994) Purification and characterization of a pyrrole-2-carboxylate oxygenase from Arthrobacter strain Py1. Biol Chem Hoppe Seyler 375:211–218

    PubMed  CAS  Google Scholar 

  • Jacobi A, Rossmann R, Böck A. (1992) The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158:444–451

    Google Scholar 

  • Jones RW, Garland PB (1977) Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Biochem J 164:199–211

    PubMed  CAS  Google Scholar 

  • Kitagawa M et al (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Laurinavichene TV, Zorin NA, Tsygankov AA (2002) Effect of redox potential on activity of hydrogenase 1 and hydrogenase 2 in Escherichia coli. Arch Microbiol 178:437–442

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938

    Google Scholar 

  • Menon NK, Robbins J, Wendt JC, Shanmugam KT, Przybyla AE (1991) Mutational analysis and characterisation of the Escherichia coli hya operon, which encodes (NiFe) hydrogenase 1. J Bacteriol 173:4851–4861

    PubMed  CAS  Google Scholar 

  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423

    PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Paschos A, Bauer A, Zimmermann A, Zehelein E, Böck A (2002) HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277:49945–49951

    Article  PubMed  CAS  Google Scholar 

  • Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sargent F, Ballantine SP, Rugman PA, Palmer T, Boxer DH (1998) Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit: identification of a soluble precursor of the small subunit in a hypB mutant. Eur J Biochem 255:746–754

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Sawers G (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie van Leeuwenhoek 66:57–88

    Article  PubMed  CAS  Google Scholar 

  • Sawers RG, Boxer DH (1986) Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur J Biochem 156:265–275

    Article  PubMed  CAS  Google Scholar 

  • Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto LA, Arp DJ (1993) In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 289, and 292 in the small (HoxK) subunit affects H2 oxidation. J Bacteriol 175:3414–3421

    PubMed  CAS  Google Scholar 

  • Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  PubMed  CAS  Google Scholar 

  • Soboh B, Krüger S, Kuhns M, Pinske C, Lehmann A, Sawers RG (2010) Development of a cell-free system reveals an oxygen-labile step in the maturation of [NiFe]-hydrogenase 2 of Escherichia coli. FEBS Lett 584:4109–4114

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets; procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  PubMed  CAS  Google Scholar 

  • Winter G, Buhrke T, Lenz O, Jones AK, Forgber M, Friedrich B (2005) A model system for [NiFe] hydrogenase maturation studies: purification of an active site-containing hydrogenase large subunit without small subunit. FEBS Lett 579:4292–4296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Grant SA 494/3-1 to RGS and grant SI 867/13-1 to AS) and the region of Sachsen-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gary Sawers.

Additional information

Communicated by William Metcalf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinske, C., Krüger, S., Soboh, B. et al. Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit. Arch Microbiol 193, 893–903 (2011). https://doi.org/10.1007/s00203-011-0726-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0726-5

Keywords

Navigation