Skip to main content
Log in

Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We explored the molecular diversity and functional capabilities of cytochrome P450 monooxygenases (P450s) from the brown-rot basidiomycete Postia placenta. Using bioinformatic and experimental data, we found 250 genes of P450s in the whole genome, including 60 putative allelic variants. Phylogenetic analysis revealed the presence of 42 families, including 18 novel families. Comparative phylogenetic analysis of P450s from P. placenta and the white-rot basidiomycete Phanerochaete chrysosporium suggested that vigorous gene duplication and molecular evolution occurred after speciation of basidiomycetes. Among the 250 gene models, 184 were isolated as full-length cDNA and transformed into Saccharomyces cerevisiae to construct a functional library in which recombinant P450s were co-expressed with yeast NADPH-P450 oxidoreductase. Using this library, the catalytic potentials of P450s against a wide variety of compounds were investigated. A functionomic survey allowed the discovery of novel catalytic properties of P. placenta P450s. The phylogenetic diversity of the CYP53 family in P. placenta was clear, and CYP53D2 is capable of converting stilbene derivatives. This is the first report of this peculiar function of the CYP53 family. Our increased understanding of the molecular and functional diversity of P450s in this fungus will facilitate comprehension of metabolic diversity in basidiomycetes and has future biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chang MCY, Eachus RA, Trieu W, Ro D-K, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    Article  PubMed  CAS  Google Scholar 

  • Chigu NL, Hirosue S, Nakamura C, Teramoto H, Ichinose H, Wariishi H (2010) Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 87:1907–1916

    Article  PubMed  CAS  Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Book  Google Scholar 

  • Faber BW, Van Gorcom RFM, Duine JA (2001) Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch Biochem Biophys 394:245–254

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Gillam EMJ (2008) Engineering cytochrome P450 enzymes. Chem Res Toxicol 21:220–231

    Article  PubMed  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology, ASC symposium series 389. American Chemical Society, Washington D.C, pp 127–140

    Chapter  Google Scholar 

  • Grogan G (2011) Cytochromes P450: exploiting diversity and enabling application as biocatalysts. Curr Opin Chem Biol 15:241–248

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP (2002) Cytochrome p450 enzymes in the generation of commercial products. Nat Rev Drug Discov 1:359–366

    Article  PubMed  CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18

    Article  CAS  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  PubMed  CAS  Google Scholar 

  • Hirosue S, Tazaki M, Hiratsuka N, Yanai S, Kabumoto H, Shinkyo R et al (2011) Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. Biochem Biophys Res Commun 407:118–123

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (1999) Biotransformation of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol Prog 15:706–714

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H, Wariishi H, Tanaka H (2002) Identification and characterization of novel cytochrome P450 genes from the white-rot basidiomycetes Coriolus versicolor. Appl Microbiol Biotechnol 58:97–105

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sundberg M (2001) Implications of polymorphic cytochrome p450-dependent drug metabolism for drug development. Drug Metab Dispos 29:570–573

    PubMed  CAS  Google Scholar 

  • Jiang H, Morgan JA (2004) Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnol Bioeng 85:130–137

    Article  PubMed  CAS  Google Scholar 

  • Kelly DE, Krasevec N, Mullins J, Nelson DR (2009) The CYPome (Cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet Biol 46:S53–S61

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion—the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Google Scholar 

  • Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR et al (2002) The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J Biol Chem 277:24000–24005

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Wariishi H (2005) Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 334:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Shimizu M, Wariishi H (2008) Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J Proteome Res 7:2342–2350

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H (1990) Expression of cloned yeast NADPH-cytochrome P450 reductase gene in Saccharomyces cerevisiae. J Biochem 108:859–865

    PubMed  CAS  Google Scholar 

  • Nazir KHMNH, Ichinose H, Wariishi H (2010) Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae. Arch Microbiol 192:395–408

    Article  Google Scholar 

  • Nazir KHMNH, Ichinose H, Wariishi H (2011) Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 77:3147–3150

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65

    PubMed  CAS  Google Scholar 

  • Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ et al (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    Article  PubMed  CAS  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of O14CH3-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565

    Article  PubMed  CAS  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes, II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd ed. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Park J, Park B, Jung K, Jang S, Yu K, Choi J et al (2008) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562–D571

    Article  PubMed  CAS  Google Scholar 

  • Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL et al (2008) CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J Med Chem 51:3480–3486

    Article  PubMed  CAS  Google Scholar 

  • Rimando AM, Suh N (2008) Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med 74:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  PubMed  CAS  Google Scholar 

  • Roupe KA, Remsberg CM, Yáñez JA, Davies NM (2006) Pharmacometrics of stilbenes: seguing towards the clinic. Curr Clin Pharmacol 1:81–101

    Article  PubMed  CAS  Google Scholar 

  • Sabbadin F, Hyde R, Robin A, Hilgarth EM, Delenne M, Flitsch S et al (2010) LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. Chembiochem 11:987–994

    Article  PubMed  CAS  Google Scholar 

  • Sakaki T, Akiyoshi-Shibata M, Yabusaki Y, Ohkawa H (1992) Organella-targeted expression of rat liver cytochrome P450c27 in yeast: genetically engineered alteration of mitochondrial P450 into a microsomal form creates a novel functional electron transport chain. J Biol Chem 267:16497–16502

    PubMed  CAS  Google Scholar 

  • Sakaki T, Shinkyo R, Takita T, Ohta M, Inouye K (2002) Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily. Arch Biochem Biophys 410:91–98

    Article  Google Scholar 

  • Sambrook J, Russel DW (2001) Extraction, purification, and analysis of mRNA from eukaryotic cells. In: Argentine J (ed) Molecular cloning: a laboratory manual, 3rd edn, vol 1. Cold spring harbor laboratory press, New York

    Google Scholar 

  • Sato S, Feltus FA, Iyer P, Tien M (2009) The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak. Curr Genet 55:273–286

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    Article  PubMed  CAS  Google Scholar 

  • Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610

    Article  Google Scholar 

  • Wei D, Houtman CJ, Kapich AN, Hunt CG, Cullen D, Hammel KE (2010) Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Appl Environ Microbiol 76:2091–2097

    Article  PubMed  CAS  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Yu A, Kneller BM, Rettie AE, Haining RL (2002) Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J Pharmacol Exp Ther 303:1291–1300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Dr. Osamu Gotoh (Kyoto University, Japan) for technical support of our bioinformatic gene prediction and to Dr. David Nelson (University of Tennessee, USA) for assistance with the CYP naming. This research was supported in part by a Grant-in-Aid (no. 21688013) for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to H.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Ichinose.

Additional information

Communicated by Axel Brakhage.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ide, M., Ichinose, H. & Wariishi, H. Molecular identification and functional characterization of cytochrome P450 monooxygenases from the brown-rot basidiomycete Postia placenta . Arch Microbiol 194, 243–253 (2012). https://doi.org/10.1007/s00203-011-0753-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0753-2

Keywords

Navigation