Skip to main content

Advertisement

Log in

EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Oxidative stress induces activation of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase families. However, it is unclear in renal epithelial cells whether the ERK activation is involved in cell survival or cell death in H2O2-treated cells. The present study was undertaken to determine the role of the ERK activation in H2O2-induced apoptosis of renal epithelial cells using opossum kidney (OK) cells, an established proximal tubular epithelial cell line. H2O2 resulted in a time- and dose-dependent apoptosis of OK cells. H2O2 treatment caused marked sustained activation of ERK. The ERK activation was prevented by PD98059 and U0126, inhibitors of ERK1/2 upstream kinase MEK1/2. Apoptosis caused by H2O2 was prevented by U0126. Transient transfection with constitutive active MEK1 increased the H2O2-induced apoptosis, whereas transfection with dominant-negative mutants of MEK1 decreased the apoptosis. H2O2 produced hyperpolarization of mitochondrial membrane potential and activation of caspases-3. H2O2-induced ERK activation was inhibited by the Src family selective inhibitor PP2 and the epidermal growth factor receptor inhibitor AG1478. The presence of AG1478, but not PP2, prevented H2O2-induced cell death. Taken together, our findings suggest that the ERK activation mediated by epidermal growth factor receptor plays an active role in inducing H2O2-induced apoptosis of OK cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arany I, Megyesi JK, Kaneto H, Tanaka S, Safirstein RL (2004) Activation of ERK or inhibition of JNK ameliorates H2O2 cytotoxicity in mouse renal proximal tubule cells. Kidney Int 65:1231–1239

    Article  PubMed  CAS  Google Scholar 

  • Baek SM, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK (2003) Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med 142:178–186

    Article  PubMed  CAS  Google Scholar 

  • Banki K, Hutter E, Gonchoroff NJ, Perl A (1999) Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 162:1466–1479

    PubMed  CAS  Google Scholar 

  • Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the kidney. Am J Physiol 251:F765–F776

    PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem 72:112–119

    Article  PubMed  CAS  Google Scholar 

  • Brand A, Gil S, Seger R, Yavin E (2001) Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation. J Neurochem 76:910–918

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Jahnukainen T, Bao W, Dare E, Ceccatelli S, Celsi G (2003) Uropathogenic Escherichia coli toxins induce caspase-independent apoptosis in renal proximal tubular cells via ERK signaling. Am J Nephrol 23:140

    Article  PubMed  CAS  Google Scholar 

  • Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71:479–500

    Article  PubMed  CAS  Google Scholar 

  • Cuttle L, Zhang X-J, Endre ZH, Winterford C, Gobe GC (2001) Bcl-XL translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress. Kidney Int 59:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  PubMed  CAS  Google Scholar 

  • di Mari JF, Davis R, Safirstein RL (1999) MAPK activation determines renal epithelial cell survival during oxidative injury. Am J Physiol 277:F195–F203

    PubMed  CAS  Google Scholar 

  • Diamond JR, Bonventre JV, Karnovsky MJ (1986) A role for oxygen free radicals in aminonucleoside nephrosis. Kidney Int 29:478–483

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Ramachandiran S, Tikoo K, Jia Z, Lau SS, Monks TJ (2004) EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Am J Physiol 287:F1049–F1058

    Article  CAS  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689

    Article  PubMed  CAS  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A (2001) Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for inter receptor signal transmission. Oncogene 20:1594–1600

    Article  PubMed  CAS  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Kitamura M (2000) Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int 58:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Kim HJ, Kwon CH, Kim JH, Woo JS, Jung Js, Kim JM (2005) Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells. J Appl Toxicol 25:374–382

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B (1997) The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165

    Article  PubMed  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942

    Article  PubMed  CAS  Google Scholar 

  • Lieberthal W, Levine JS (1996) Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol 271:F477–F488

    PubMed  CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  • Meves A, Stock SN, Beyerle A, Pittelkow MR, Peus D (2001) H(2)O(2) mediates oxidative stress-induced epidermal growth factor receptor phosphorylation. Toxicol Lett 122:205–214

    Article  PubMed  CAS  Google Scholar 

  • Nowak G (2002) PKC-a and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J Biol Chem 277:43377–43388

    Article  PubMed  CAS  Google Scholar 

  • Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798

    PubMed  CAS  Google Scholar 

  • Peus D, Meves A, Vasa RA, Beyerle A, O’Brien T, Pittelkow MR (1999) H2O2 is required for UVB-induced EGF receptor and downstream signaling pathway activation. Free Radic Biol Med 27:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Piret JP, Arnould T, Fuks B, Chatelain P, Remacle J, Michiels C (2004) Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochem Pharmacol 67:611–620

    Article  PubMed  CAS  Google Scholar 

  • Poppe M, Reimertz C, Dussmann H, Krohn AJ, Luetjens CM, Bockelmann D, Nieminen AL, Kogel D, Prehn JH (2001) Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis. J Neurosci 21:4551–4563

    PubMed  CAS  Google Scholar 

  • Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11–31

    Article  PubMed  CAS  Google Scholar 

  • Puskas F, Gergely P Jr, Banki K, Perl A (2000) Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. Faseb J 14:1352–1361

    Article  PubMed  CAS  Google Scholar 

  • Ramachandiran S, Huang O, Dong J, Lau SS, Monks TJ (2002) Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubular epithelial cells. Chem Res Toxicol 15:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Rana A, Sathyanarayana P, Lieberthal W (2001) Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 6:83–102

    Article  PubMed  CAS  Google Scholar 

  • Rehan A, Johnson KJ, Wiggins RC, Kunkel RG, Ward PA (1984) Evidence for the role of oxygen radicals in acute nephrotoxic nephritis. Lab Invest 51:396–403

    PubMed  CAS  Google Scholar 

  • Sachsenmaier C, Radler-Pohl A, Zinck R, Nordheim A, Herrlich P, Rahmsdorf HJ (1994) Involvement of growth factor receptors in the mammalian UVC response. Cell 78:963–972

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Sato A, Aoto M, Fukami Y (1995) c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun 215:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Shirato I, Kobayashi M, Endou H (1999) Hydrogen peroxide induces necrosis, apoptosis, oncosis and apoptotic oncosis of mouse terminal proximal straight tubule cells. Nephron 81:234–238

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410:195–213

    Article  PubMed  CAS  Google Scholar 

  • Tian W, Zhang Z, Cohen DM (2000) MAPK signaling and the kidney. Am J Physiol Renal Physiol 279:F593–F604

    PubMed  CAS  Google Scholar 

  • Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415

    Article  PubMed  CAS  Google Scholar 

  • Walker PD, Shah SV (1988) Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J Clin Invest 81:334–341

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Martindale JL, Liu Y, Holbrook NJ (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333:291–300

    PubMed  CAS  Google Scholar 

  • Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR (2001) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153:319–328

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  • Zhougang S, Schnellmann RG (2004) H2O2-induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells. Am J Physiol Renal Physiol 286:F858–F865

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grant R01-2002-000-00460-0 (2002) from the Basic Research Program of the Korean Science & Engineering foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Keun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Kim, S.Y., Kwon, C.H. et al. EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol 80, 337–346 (2006). https://doi.org/10.1007/s00204-005-0052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-005-0052-2

Keywords

Navigation