Skip to main content

Advertisement

Log in

Clinical evidence for lead-induced inhibition of nitric oxide formation

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Lead exposure has been associated with increased cardiovascular risk, which may result, at least in part, from lead-induced increases in oxidative stress and depressed nitric oxide (NO) availability. However, no previous clinical study has examined whether lead exposure is associated with significant effects on biomarkers of NO activity (plasma nitrites, nitrates, and cyclic guanosine 3′,5′-monophosphate; cGMP). We investigated whether there is an association between the circulating concentrations of nitrites, nitrates, and cGMP and the concentrations of lead in whole blood (B-Pb) or plasma (P-Pb) from 62 lead-exposed subjects (30 men and 32 women). P-Pb was determined by inductively coupled plasma mass spectrometry and B-Pb by graphite furnace atomic absorption spectrometry. Plasma nitrite and nitrate concentrations were measured using an ozone-based chemiluminescence assay. Plasma cGMP concentrations were measured using a commercial enzyme immunoassay. We found a negative correlation between plasma nitrite and B-Pb concentrations (= −0.358; = 0.004), and between plasma nitrite and P-Pb concentrations (= −0.264; = 0.038), thus suggesting increased inhibition of NO formation with increasing B-Pb or P-Pb concentrations. However, no significant correlations were found between plasma nitrate or cGMP and B-Pb or P-Pb concentrations (all > 0.05). These findings suggest a significant inhibitory effect of lead exposure on NO formation and provide clinical evidence for a biological mechanism possibly involved the association between lead exposure and increased cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ATSDR (1999) Toxicological Profile for Lead. US Department of Health and Human Services, Public Health Services, Atlanta

  • Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsons PJ (2005) Current needs and limitations on the use of biomarkers of internal dose to diagnose lead exposure. Environ Health Perspect 113:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Barbosa F Jr, Sandrim VC, Uzuelli JA, Gerlach RF, Tanus-Santos JE (2006) eNOS genotype-dependent correlation between whole blood lead and plasma nitric oxide products concentrations. Nitric Oxide 14:58–64

    Article  PubMed  CAS  Google Scholar 

  • Baylis C, Vallance P (1998) Measurement of nitrite and nitrate levels in plasma and urine—what does this measure tell us about the activity of the endogenous nitric oxide system? Curr Opin Nephrol Hypertens 7:59–62

    PubMed  CAS  Google Scholar 

  • Blazka ME, Harry GJ, Luster MI (1994) Effect of lead acetate on nitrite production by murine brain endothelial cell cultures. Toxicol Appl Pharmacol 126:191–194

    Article  PubMed  CAS  Google Scholar 

  • Carmignani M, Volpe AR, Boscolo P, Qiao N, Di Gioacchino M, Grilli A, Felaco M (2000) Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci 68:401–415

    Article  PubMed  CAS  Google Scholar 

  • Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    Article  PubMed  CAS  Google Scholar 

  • Ellis G, Adatia I, Yazdanpanah M, Makela SK (1998) Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin Biochem 31:195–220

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Arenas G, Claudio L, Perez-Severiano F, Rios C (1999) Lead acetate exposure inhibits nitric oxide synthase activity in capillary and synaptosomal fractions of mouse brain. Toxicol Sci 50:244–248

    Article  PubMed  CAS  Google Scholar 

  • Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Korsch MJ, Vimpani G (1997) Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med 130:51–62

    Article  PubMed  CAS  Google Scholar 

  • Gulson BL, Mahaffey KR, Jameson CW, Mizon KJ, Korsch MJ, Cameron MA, Eisman JA (1998) Mobilization of lead from the skeleton during the postnatal period is larger than during pregnancy. J Lab Clin Med 131:324–329

    Article  PubMed  CAS  Google Scholar 

  • Gulson BL, Pounds JG, Mushak P, Thomas BJ, Gray B, Korsch MJ (1999) Estimation of cumulative lead releases (lead flux) from the maternal skeleton during pregnancy and lactation. J Lab Clin Med 134:631–640

    Article  PubMed  CAS  Google Scholar 

  • Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29:927–945

    Article  PubMed  CAS  Google Scholar 

  • Gurer-Orhan H, Sabir HU, Ozgunes H (2004) Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 195:147–154

    Article  PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Westenfelder C, Taintor R, Vavrin Z, Kablitz C, Baranowski RL, Ward JH, Menlove RL, McMurry MP, Kushner JP et al (1992) Evidence for cytokine-inducible nitric oxide synthesis from l-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89:867–877

    Article  PubMed  Google Scholar 

  • Hirata Y, Ishii M, Matsuoka H, Sugimoto T, Iizuka M, Uchida Y, Serizawa T, Sato H, Kohmoto O, Mochizuki T et al (1987) Plasma concentrations of alpha-human atrial natriuretic polypeptide and cyclic GMP in patients with heart disease. Am Heart J 113:1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Kelm M, Preik-Steinhoff H, Preik M, Strauer BE (1999) Serum nitrite sensitively reflects endothelial NO formation in human forearm vasculature: evidence for biochemical assessment of the endothelial l-arginine-NO pathway. Cardiovasc Res 41:765–772

    Article  PubMed  CAS  Google Scholar 

  • Kielstein JT, Impraim B, Simmel S, Bode-Boger SM, Tsikas D, Frolich JC, Hoeper MM, Haller H, Fliser D (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109:172–177

    Article  PubMed  CAS  Google Scholar 

  • Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, Scheeren T, Godecke A, Schrader J, Schulz R, Heusch G, Schaub GA, Bryan NS, Feelisch M, Kelm M (2003) Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med 35:790–796

    Article  PubMed  CAS  Google Scholar 

  • Kleinbongard P, Dejam A, Lauer T, Jax T, Kerber S, Gharini P, Balzer J, Zotz RB, Scharf RE, Willers R, Schechter AN, Feelisch M, Kelm M (2006) Plasma nitrite concentrations reflect the degree of endothelial dysfunction in humans. Free Radic Biol Med 40:295–302

    Article  PubMed  CAS  Google Scholar 

  • Lauer T, Preik M, Rassaf T, Strauer BE, Deussen A, Feelisch M, Kelm M (2001) Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci USA 98:12814–12819

    Article  PubMed  CAS  Google Scholar 

  • Metzger IF, Souza-Costa DC, Marroni AS, Nagassaki S, Desta Z, Flockhart DA, Tanus-Santos JE (2005) Endothelial nitric oxide synthase gene haplotypes associated with circulating concentrations of nitric oxide products in healthy men. Pharmacogenet Genomics 15:565–570

    PubMed  CAS  Google Scholar 

  • Moller L, Kristensen TS (1992) Blood lead as a cardiovascular risk factor. Am J Epidemiol 136:1091–1100

    PubMed  CAS  Google Scholar 

  • Montenegro MF, Barbosa F Jr, Sandrim VC, Gerlach RF, Tanus-Santos JE (2006) A polymorphism in the delta-aminolevulinic acid dehydratase gene modifies plasma/whole blood lead ratio. Arch Toxicol (in press). DOI 10.1007/s00204-005-0056-y

  • Nagassaki S, Metzger IF, Souza-Costa DC, Marroni AS, Uzuelli JA, Tanus-Santos JE (2005) eNOS genotype is without effect on circulating nitrite/nitrate level in healthy male population. Thromb Res 115:375–379

    Article  PubMed  CAS  Google Scholar 

  • Navas-Acien A, Selvin E, Sharrett AR, Calderon-Aranda E, Silbergeld E, Guallar E (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109:3196–3201

    Article  PubMed  CAS  Google Scholar 

  • Ni Z, Hou S, Barton CH, Vaziri ND (2004) Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney Int 66:2329–2336

    Article  PubMed  CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  • Pirkle JL, Schwartz J, Landis JR, Harlan WR (1985) The relationship between blood lead levels and blood pressure and its cardiovascular risk implications. Am J Epidemiol 121:246–258

    PubMed  CAS  Google Scholar 

  • Rosselli M, Imthurn B, Keller PJ, Jackson EK, Dubey RK (1995) Circulating nitric oxide (nitrite/nitrate) levels in postmenopausal women substituted with 17 beta-estradiol and norethisterone acetate. A two-year follow-up study. Hypertension 25:848–853

    PubMed  CAS  Google Scholar 

  • Schutz A, Bergdahl IA, Ekholm A, Skerfving S (1996) Measurement by ICP-MS of lead in plasma and whole blood of lead workers and controls. Occup Environ Med 53:736–740

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J (1995) Lead, blood pressure, and cardiovascular disease in men. Arch Environ Health 50:31–37

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld EK, Schwartz J, Mahaffey K (1988) Lead and osteoporosis: mobilization of lead from bone in postmenopausal women. Environ Res 47:79–94

    Article  PubMed  CAS  Google Scholar 

  • Souza-Silva AR, Dias-Junior CA, Uzuelli JA, Moreno H Jr, Evora PR, Tanus-Santos JE (2005) Hemodynamic effects of combined sildenafil and l-arginine during acute pulmonary embolism-induced pulmonary hypertension. Eur J Pharmacol 524:126–131

    Article  PubMed  CAS  Google Scholar 

  • Tanus-Santos JE, Gordo WM, Cittadino M, Moreno H Jr (2000) Plasma cGMP levels in air embolism-induced acute lung injury. J Crit Care 15:137–141

    Article  PubMed  CAS  Google Scholar 

  • Tanus-Santos JE, Desai M, Deak LR, Pezzullo JC, Abernethy DR, Flockhart DA, Freedman JE (2002) Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics 12:407–413

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Ding Y (2001) Effect of lead on nitric oxide synthase expression in coronary endothelial cells: role of superoxide. Hypertension 37:223–226

    PubMed  CAS  Google Scholar 

  • Vaziri ND, Sica DA (2004) Lead-induced hypertension: role of oxidative stress. Curr Hypertens Rep 6:314–320

    PubMed  Google Scholar 

  • Vaziri ND, Liang K, Ding Y (1999) Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney Int 56:1492–1498

    Article  PubMed  CAS  Google Scholar 

  • Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196

    PubMed  CAS  Google Scholar 

  • Wang XL, Mahaney MC, Sim AS, Wang J, Blangero J, Almasy L, Badenhop RB, Wilcken DE (1997) Genetic contribution of the endothelial constitutive nitric oxide synthase gene to plasma nitric oxide levels. Arterioscler Thromb Vasc Biol 17:3147–3153

    PubMed  CAS  Google Scholar 

  • Yang BK, Vivas EX, Reiter CD, Gladwin MT (2003) Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic Res 37:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zanao RA, Barbosa F Jr, Parsons PJ, Krug FJ (2002) Investigations on a W-Rh permanent modifier for the detection of Pb in blood by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 57:1291–1300

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento e Cientifico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Tanus-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, F., Sertorio, J.T.C., Gerlach, R.F. et al. Clinical evidence for lead-induced inhibition of nitric oxide formation. Arch Toxicol 80, 811–816 (2006). https://doi.org/10.1007/s00204-006-0111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-006-0111-3

Keywords

Navigation