Skip to main content
Log in

Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The amphetamine-derived designer drugs have been illegally used worldwide as recreational drugs, some of which are known to be hepatotoxic in humans. To compare their cytotoxic effects, 3,4-methylenedioxy-N-methamphetamine (MDMA) and its related analogues, N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB), 3,4-(methylenedioxyphenyl)-2-butanamine (BDB) and 2-methylamino-1-(3,4-methylenedioxyphenyl)-propane-1-one (methylone) were studied in freshly isolated rat hepatocytes. MBDB caused not only concentration (0–4.0 mM)- and time (0–2 h)-dependent cell death accompanied by the formation of cell blebs, and the loss of cellular ATP and adenine nucleotide pools, and reduced glutathione levels, but also the accumulation of oxidized glutathione. Of the other analogues examined, the cytotoxicity of MBDB and BDB was greater than that of MDMA and methylone, suggesting that hepatotoxicity is generally induced by these drugs. In addition, DNA damage and the induction of reactive oxygen species were greater after the incubation of hepatocytes with MBDB (2 and 4 mM) than after that with MDMA. In isolated liver mitochondria, MBDB/BDB resulted in a greater increase in the rate of state 4 oxygen consumption than did MDMA/methylone, indicating an uncoupling effect and a decrease in the rate of state 3 oxygen consumption in a concentration dependent manner. Furthermore, MBDB resulted in mitochondrial swelling dependent on the mitochondrial permeability transition (MPT); the effect of MDMA was less than that of MBDB. Taken collectively, these results suggest that (1) the onset of cytotoxicity caused by designer drugs such as MBDB and MDMA is linked to mitochondrial failure dependent upon the induction of the MPT accompanied by mitochondrial depolarization and depletion of ATP through uncoupling of oxidative phosphorylation in rat hepatocytes, and (2) MBDB and MDMA elicit DNA damage, suggesting that nuclei as well as mitochondria are target sites of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MDMA:

3,4-Methylenedioxy-N-methamphetamine

MBDB:

N-Methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine

BDB:

3,4-(Methylenedioxyphenyl)-2-butanamine

Methylone:

2-Methylamino-1-(3,4-methylenedioxyphenyl)propane-1-one

DMSO:

Dimethyl sulfoxide

GSH:

Glutathione reduced form

GSSG:

Glutathione oxidized form

MPT:

Mitochondrial permeability transition

ROS:

Reactive oxygen species

References

  • Andreu V, Mas A, Bruguera M, Salmerón JM, Moreno V, Nogué S, Rodés J (1998) Ecstasy: a common cause of severe acute hepatotoxicity. J Hepatol 29:394–397

    Article  PubMed  CAS  Google Scholar 

  • Arora AS, Jones BJ, Patel TC, Bornk SF, Gores GJ (1997) Ceramide induces hepatocytes cell death through disruption of mitochondrial function in the rat. Hematology 25:958–963

    CAS  Google Scholar 

  • Beitia G, Cobreros A, Sainz L, Cenarruzabeitia E (1999) 3, 4-Methylenedioxy-methamphetamine (ecstasy)-induced hepatotoxicity: effect on cytosolic calcium signals in isolated hepatocytes. Liver 19:234–241

    Article  PubMed  CAS  Google Scholar 

  • Bellomo G, Mirabelli F, Richelmi P, Malorni W, Iosi F, Orrenius S (1990) The cytoskeleton as a target in quinone toxicity. Free Radic Res Commun 8:391–399

    Article  PubMed  CAS  Google Scholar 

  • Bosser BG, Gores GJ (1995) Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology 108:252–275

    Article  Google Scholar 

  • Bronson ME, Jiang W, DeRuiter J, Clark CR (1995) Structure–activity relationships of BDB and its monomethyl and dimethyl derivatives. Pharmacol Biochem Behav 51:477–479

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Thera 99:45–53

    Article  CAS  Google Scholar 

  • Cain K, Skilleter DS (1987) Preparation and use of mitochondria in toxicological research. In: Snell K, Mullock B (eds) Biochemical toxicology, a practical approach. IRL Press, Oxford, pp 217–254

    Google Scholar 

  • Capela JP, Meisel A, Abreu AR, Branco PS, Ferreira LM, Lobo AM, Remiao F, Bastos ML, Carvalho F (2006) Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. J Pharmacol Exp Ther 316:53–61

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Hawksworth G, Milhazes N, Borges F, Monks TJ, Fernandes E, Carvalho F, Bastos ML (2002) Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Arch Toxicol 76:581–588

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Milhazes N, Remião F, Borges F, Fernandes E, Amado F, Monks TJ, Carvalho F, Bastos ML (2004a) Hepatotoxicity of 3, 4-methylenedioxy-amphetamine α-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Arch Toxicol 78:16–24

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Remião F, Milhazes N, Borges F, Fernandes E, Carvalho F, Bastos ML (2004b) The toxicity of N-methyl-α-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology 200:193–203

    Article  PubMed  CAS  Google Scholar 

  • Dar KJ, McBrien ME (1996) MDMA induced hyperthermia: report of a fatality and review of current therapy. Intensive Care Med 22:995–996

    Article  PubMed  CAS  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36:1–22

    Article  PubMed  CAS  Google Scholar 

  • Fusi F, Sgaragli G, Murphy MP (1992) Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation. Biochem Pharmacol 43:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA, Young R, Martin BR, Dal Cason TA (1995) Methcathione (“cat”): an enantiomeric potency comparison. Pharmacol Biochem Behav 50:601–606

    Article  PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(pt 1):93–98

    PubMed  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanism by which mitochondria transport calcium. Am J Phys 258(5 pt 1):C755–C786

    CAS  Google Scholar 

  • Hall AP, Henry JA (2006) Acute toxic effects of ‘Ecstasy’ (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth 96:678–685

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Kiskins E, Fjällman A, Suter W (2001) Influence of cytotoxicity and compound precipitation on test results in the alkaline comet assay. Mutat Res 497:199–212

    PubMed  CAS  Google Scholar 

  • Hegadoren KM, Baker GB, Bourin M (1999) 3, 4-Methylenedioxy analogues of amphetamine: defining the risks to humans. Neurosci Biobehav Rev 23:539–553

    Article  PubMed  CAS  Google Scholar 

  • Henry JA, Jeferey KJ, Dawling S (1992) Toxicity and deaths from 3, 4-methylenedioxymethanphetamine (“ecstasy”). Lancet 340:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw DB, Sklar LA, Bohl B, Schraufstatter LU, Rossi MW, Spragg RG, Cochrane CG (1986) Cytoskeletal and morphological impact of cellular oxidant injury. Am J Pathol 123(3):454–464

    PubMed  CAS  Google Scholar 

  • Hiramatsu M, Kumagai Y, Unger SE, Cho AK (1990) Metabolism of methylenedioxymethamphetamine and a quinone identified as its glutathione adduct. J Pharmacol Exp Ther 254:521–527

    PubMed  CAS  Google Scholar 

  • Huang X, Frenkel K, Klein CB, Costa M (1993) Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence. Toxicol Appl Pharmacol 120:29–36

    Article  PubMed  CAS  Google Scholar 

  • Jacob PIII, Shulgin AT (1994) Structure-activity relationships of the classic hallucinogens and their analogs. Natl Inst Drug Abuse Res Monogr Ser Res Monogr 146:74–91

    Google Scholar 

  • Jones DP (1981) Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogra 225:446–449

    Article  CAS  Google Scholar 

  • Jones AL, Simpson J (1999) Review article: mechanisms and management of hepatotoxicity in ecstasy (MDMA) and amphetamine intoxications. Aliment Pharmacol Ther 13:129–133

    Article  PubMed  CAS  Google Scholar 

  • Kamata H, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 36: 709–723

  • Kehrer JP, Jones DP, Lemasters JJ, Farber H, Jaeschke H (1990) Mechanisms of hypoxic cell injury. summary of the symposium presented at the 1990 annual meeting of the Society of Toxicology. Toxicol Appl Pharmacol 106:165–178

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66:1–15

    PubMed  CAS  Google Scholar 

  • Lemasters JJ, Nieminen AL, Chacon E, Imberti R, Gores G, Reece JM, Herman B (1993) Use of fluoresencet probes to monitor mitochondrial membrane potential in isolated mitochondria, cell suspensions, and cultured cells. In: Lash LH, Jones DP (eds) Mitochondrial dysfunction. Academic Press, San Diego, pp 404–415

    Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B (1997) The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165

    Article  PubMed  CAS  Google Scholar 

  • Lin LY, Kumagai Y, Cho AK (1992) Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem Res Toxicol 5:401–406

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Milroy CM, Clark JC, Forrest AR (1996) Pathology of deaths associated with “ecstasy” and “eve” misuse. J Clin Pathol 49:149–153

    Article  PubMed  CAS  Google Scholar 

  • Moldéus P, Hogberg J, Orrenius S (1978) Isolation and use of liver cells. Meth Enzymol 52:60–71

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Tayama S, Ogata A, Suzuki T, Ishii H (2006) ATP-generating glycolytic substrates prevent N-nitrosofenfluramine-induced cytotoxicity in isolated rat hepatocytes. Chem Biol Interact 164:93–101

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Moore G (1999) Role of mitochondrial membrane permeability transition in p-hydroxybenzoate ester-induced cytotoxicity in rat hepatocytes. Biochem Pharmacol 58:811–816

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Moldéus P (1998) Mechanism of p-hydroxybenzoate ester-induced mitochondrial dysfunction and cytotoxicity in rat hepatocytes. Biochem Pharmacol 55:1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18:305–313

    PubMed  CAS  Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Ann Rev Pharmacol Toxicol 32:447–470

    Google Scholar 

  • Ninković M, Malicević Z, Selaković V, Simić I, Vasiljević I (2004) N-methyl-3, 4-methylenedioxyamphetamine-induced hepatotoxicity in rats: oxidative stress after acute and chronic administration. Vojnosanit Pregl 61:125–131

    PubMed  Google Scholar 

  • Petronilli V, Constantini P, Scorrano L, Colonna R, Passamonti S, Bermardi P (1994) The voltage sensor of the mitochondrial permeability transition pore is turned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidation and its reversal by reducing agents. J Biol Chem 269:16638–16642

    PubMed  CAS  Google Scholar 

  • Reed DJ, Babson JR, Beatty PW, Brodie AE, Ellis WW, Potter DW (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide and related thiols and disulfides. Anal Biochem 106:55–62

    Article  PubMed  CAS  Google Scholar 

  • Shen H-M, Shi C-Y, Shen Y, Ong C-N (1996) Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 21:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryn J-C, Sasaki YF (2000) Single cell gell/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  • Trost LC, Lemasters JJ (1996) The mitochondrial permeability transition new pathophysiological mechanism if Reye’s syndrome and toxic lover injury. J Pharmcol Exp Ther 278:1000–1005

    CAS  Google Scholar 

  • Walker TM, Davenport-Jones JE, Fox RM, Atterwill CK (1999) The neurotoxic effects of methylenedioxymethamphetamine (MDMA) and its metabolites on rat brain spheroids in culture. Cell Biol Toxicol 15:137–142

    Article  PubMed  CAS  Google Scholar 

  • Wallace KB, Eells JT, Madeira VM, Cortopassi G, Jones DP (1997) Mitochondria-mediated cell injury. Symposium overview. Fundam Appl Toxicol 38:23–37

    Article  PubMed  CAS  Google Scholar 

  • Walubo A, Seger D (1999) Fatal multi-organ failure after suicidal overdose with MDMA, ‘ecstasy’: case report and review of the literature. Hum Exp Toxicol 18:119–125

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  PubMed  CAS  Google Scholar 

  • Zalis EG, Lundberg GD, Knutson RA (1967) The pathophysiology of acute amphetamine poisoning with pathologic correlation. J Pharmacol Exp Ther 158:115–127

    PubMed  CAS  Google Scholar 

  • Zhang JG, Tirmenstein MA, Nicholls-Grzemski FA, Fariss MW (2001) Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Arch Biochem Biophys 393:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ichirou Yasuda and his colleagues for providing MDMA and its analogues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Nakagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, Y., Suzuki, T., Tayama, S. et al. Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol 83, 69–80 (2009). https://doi.org/10.1007/s00204-008-0323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0323-9

Keywords

Navigation