Skip to main content
Log in

The role of NF-κB in 6-hydroxydopamine- and TNFα-induced apoptosis of PC12 cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

6-Hydroxydopamine (6-OHDA) is widely used to study the death of catecholaminergic cells related to Parkinson’s disease. Oxidative stress and gene transcription are known to mediate the pro-apoptotic effect of 6-OHDA. As redox mechanisms are involved in activation of the transcription factor NF-κB, we studied the role of NF-κB in 6-OHDA-induced death of PC12 cells.

We stably transfected PC12 cells with a doxycycline-regulated expression vector for the NF-κB super-repressor (IκBα mutated at serine-32 and serine-36, IκBα-SR). NF-κB transcriptional activity was evaluated by transient transfection of an NF-κB-driven luciferase reporter gene. Expression of IκBα-SR inhibited NF-κB stimulated by tumor necrosis factor α (TNFα) and 6-OHDA. Apoptosis was quantified by counting cells with condensed nuclei. IκBα-SR inhibited apoptosis induced by 6-OHDA but enhanced apoptosis that was triggered by TNFα. The converse effects of NF-κB could be due to different target genes that are induced in the context of TNFα and 6-OHDA stimulation. Indeed, TNFα stimulated mRNA accumulation of the anti-apoptotic superoxide dismutase 2 through NF-κB whereas 6-OHDA induced mRNA accumulation of the pro-apoptotic c-myc.

These data demonstrate that NF-κB regulates survival of the neuron-like PC12 cells in a stimulus-specific manner. In the context of 6-OHDA stimulation, NF-κB mediates pro-apoptotic effects, suggesting that NF-κB signaling could be a target for drug development in Parkinson-related neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  CAS  PubMed  Google Scholar 

  • Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RKH (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18:1175–1177

    CAS  PubMed  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    Article  CAS  PubMed  Google Scholar 

  • Beg A, Sha W, Bronson R, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170

    CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Nissou MF, Verna JM (2001) 6-hydroxydopamine-induced nuclear factor-kappa B activation in PC12 cells. Biochem Pharmacol 62:473–481

    Article  CAS  PubMed  Google Scholar 

  • Borrello S, Demple B (1997) NF kappa B-independent transcriptional induction of the human manganous superoxide dismutase gene. Arch Biochem Biophys 348:289–294

    PubMed  Google Scholar 

  • Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW (1995) Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 15:2809–2818

    CAS  PubMed  Google Scholar 

  • Curtius HC, Wolhensberger M, Steinmann B, Redweik S (1974) Mass fragmentography of dopamine and 6-OH-dopamine. Application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatogr 99:529–540

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  • De Erausquin GA, Hyrc K, Dorsey DA, Mamah D, Dokucu M, Masco DH, Walton T, Dikranian K, Soriano M, Garcia Verdugo JM, Goldberg MP, Dugan LL (2003) Nuclear translocation of nuclear transcription factor-kappa B by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors leads to transcription of p53 and cell death in dopaminergic neurons. Mol Pharmacol 63:784–790

    Article  PubMed  Google Scholar 

  • Duyao MP, Buckler AJ, Sonenshein GE (1990) Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Proc Natl Acad Sci USA 87:4727–4731

    CAS  PubMed  Google Scholar 

  • Erlandsson N, Baumann B, Rössler OG, Kaufmann K, Giehl KM, Wirth T, Thiel G (2002) Lack of correlation between NF-κB activation and induction of programmed cell death in PC12 pheochromocytoma cells treated with 6-hydroxydopamine or the cannabinoid receptor 1-agonist CP55,940. Biochem Pharmacol 64:487–495

    Article  CAS  PubMed  Google Scholar 

  • Ghribi O, Herman MM, Pramoonjago P, Savory J (2003) MPP+ induces the endoplasmic reticulum stress response in rabbit brain involving activation of the ATF-6 and NF-κB signaling pathways. J Neuropathol Exp Neurol 62:1144–1153

    CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    CAS  PubMed  Google Scholar 

  • Haviv R, Stein R (1999) Nerve growth factor inhibits apoptosis induced b tumor necrosis factor in PC12 cells. J Neurosci Res 55:269–277

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa M, Miyashita H, Sakamoto I, Kitagawa M, Tanaka H, Yasuda H, Karin M, Kikugawa K (2003) Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J 22:3356–3366

    Article  CAS  PubMed  Google Scholar 

  • Herrmann O, Tarabin V, Suzuki S, Attigah N, Prinz S, Schneider A, Coserea I, Monyer H, Brombacher F, Schwaninger M (2003) Regulation of body temperature and neuroprotection by endogenous interleukin-6 in focal cerebral ischemia. J Cereb Blood Flow Metab 23:406–415

    Article  CAS  PubMed  Google Scholar 

  • Holtz WA, O’Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 94:7531–7536

    Article  CAS  PubMed  Google Scholar 

  • Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Droge W, Schmitz ML (2000) The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem 267:3828–3835

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    CAS  PubMed  Google Scholar 

  • Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  Google Scholar 

  • Kiningham KK, Xu Y, Daosukho C, Popova B, St Clair DK (2001) Nuclear factor kappaB-dependent mechanisms coordinate the synergistic effect of PMA and cytokines on the induction of superoxide dismutase 2. Biochem J 353:147–156

    Article  CAS  PubMed  Google Scholar 

  • Levites Y, Youdim MBH, Maor G, Mandel S (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappa (NF-κB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29

    Article  CAS  PubMed  Google Scholar 

  • Mielke K, Herdegen T (2002) Fatal shift of signal transduction is an integral part of neuronal differentiation: JNKs realize TNFalpha-mediated apoptosis in neuronlike, but not naive, PC12 cells. Mol Cell Neurosci 20:211–224

    Article  CAS  PubMed  Google Scholar 

  • Nass R, Blakely RD (2003) The caenorhabditis elegans dopaminergic system: opportunities for insight into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol 43:521–544

    Article  CAS  PubMed  Google Scholar 

  • Packham G, Cleveland JL (1995) c-Myc and apoptosis. Biochim Biophys Acta 1242:11–28

    Article  CAS  PubMed  Google Scholar 

  • Panet H, Barzilai A, Daily D, Melamed E, Offen D (2001) Activation of nuclear transcription factor kappa B (NF-kappaB) is essential for dopamine-induced apoptosis in PC12 cells. J Neurochem 77:391–398

    Article  CAS  PubMed  Google Scholar 

  • Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, Spano P (2002) Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1beta. J Biol Chem 277:20717–20723

    Article  CAS  PubMed  Google Scholar 

  • Roshak AK, Jackson JR, McGough K, Chabot-Fletcher M, Mochan E, Marshall LA (1996) Manipulation of distinct NFkappaB proteins alters interleukin-1beta-induced human rheumatoid synovial fibroblast prostaglandin E2 formation. J Biol Chem 271:31496–31501

    CAS  PubMed  Google Scholar 

  • Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404:892–897

    Article  CAS  PubMed  Google Scholar 

  • Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–10698

    CAS  PubMed  Google Scholar 

  • Sallmann S, Juttler E, Prinz S, Petersen N, Knopf U, Weiser T, Schwaninger M (2000) Induction of interleukin-6 by depolarization of neurons. J Neurosci 20:8637–8642

    CAS  Google Scholar 

  • Scholzke MN, Potrovita I, Subramaniam S, Prinz S, Schwaninger M (2003) Glutamate activates NF-kappaB through calpain in neurons. Eur J Neurosci 18:3305–3310

    PubMed  Google Scholar 

  • Schwaninger M, Sallmann S, Petersen N, Schneider A, Prinz S, Libermann TA, Spranger M (1999) Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-kappaB. J Neurochem 73:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc 81:6236–6240

    Google Scholar 

  • Teismann P, Schwaninger M, Weih F, Ferger B (2001) Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson’s disease. Neuroreport 12:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789

    PubMed  Google Scholar 

  • Walkinshaw G, Waters CM (1994) Neurotoxin-induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience 63:975–987

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Qin ZH, Leng Y, Wang Y, Jin X, Chase TN, Bennett MC (2002) Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem 83:1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Wong GH, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the DFG to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwaninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarabin, V., Schwaninger, M. The role of NF-κB in 6-hydroxydopamine- and TNFα-induced apoptosis of PC12 cells. Naunyn-Schmiedeberg's Arch Pharmacol 369, 563–569 (2004). https://doi.org/10.1007/s00210-004-0938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0938-1

Keywords

Navigation