Skip to main content

Advertisement

Log in

The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

This paper puts the case for the hippocampus as being central to the neuropathology and pathophysiology of schizophrenia. The evidence comes from a range of approaches, both in vivo (neuropsychology, structural and functional imaging) and post mortem (histology, morphometry, gene expression, and neurochemistry). Neuropathologically, the main positive findings concern neuronal morphology, organisation, and presynaptic and dendritic parameters. The results are together suggestive of an altered synaptic circuitry or “wiring” within the hippocampus and its extrinsic connections, especially with the prefrontal cortex. These changes plausibly represent the anatomical component of the aberrant functional connectivity that underlies schizophrenia. Glutamatergic pathways are prominently but not exclusively affected. Changes appear somewhat greater in the left hippocampus than the right, and CA1 is relatively uninvolved compared to other subfields. Hippocampal pathology in schizophrenia may be due to genetic factors, aberrant neurodevelopment, and/or abnormal neural plasticity; it is not due to any recognised neurodegenerative process. Hippocampal involvement is likely to be associated with the neuropsychological impairments of schizophrenia rather than with its psychotic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbarian S, Bunney WE Jr, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993a) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbrances of cortical development. Arch Gen Psychiatry 50:169–177

    CAS  PubMed  Google Scholar 

  • Akbarian S, Viňuela A, Kim JJ, Potkin SG, Bvunney WE, Jr, Jones EG (1993b) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187

    CAS  PubMed  Google Scholar 

  • Akil M, Lewis D (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154:1010–1012

    CAS  PubMed  Google Scholar 

  • Altshuler LL, Conrad A, Kovelman JA, Scheibel AB (1987) Hippocampal pyramidal cell orientation in schizophrenia. A controlled neurohistologic study of the Yakovlev collection. Arch Gen Psychiatry 44:1094–1098

    CAS  PubMed  Google Scholar 

  • Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K, Wilkins J, Gerner R, Mintz J (2000) An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 48:147–162

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 711–735

  • Arnold SE (1997) The medial temporal lobe in schizophrenia. J Neuropsychiatr Clin Neurosci 9:460–470

    CAS  Google Scholar 

  • Arnold SE (2000) Hippocampal pathology. In: Harrison PJ, Roberts GW (eds) The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford, pp 57–80

  • Arnold SE, Trojanowski JQ (1996) Cognitive impairment in elderly schizophrenia: a dementia (still) lacking distinctive histopathology. Schizophr Bull 22:5–9

    CAS  PubMed  Google Scholar 

  • Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR (1991a) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    CAS  PubMed  Google Scholar 

  • Arnold SE, Lee VMY, Gur RE, Trojanowski JQ (1991b) Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 88:10850–10854

    CAS  PubMed  Google Scholar 

  • Arnold SE, Franz B, Gur RC, Shapiro R, Moberg P, Trojanowski JQ (1995) Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry 152:738–748

    CAS  PubMed  Google Scholar 

  • Arnold SE, Franz BR, Trojanowski JQ, Moberg PJ, Gur RE (1996) Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol 91:269–277

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE, Ruscheinsky DD, Han LY (1997) Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 42:639–647

    CAS  PubMed  Google Scholar 

  • Arnold SE, Trojanowski J, Gur RE, Blackwell P, Han L, Choi C (1998) Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 55:225–232

    Article  CAS  PubMed  Google Scholar 

  • Atwood HL, Karunanithi S (2002). Diversification of synaptic strength: presynaptic elements. Nature Rev Neurosci 3:497–516

    Article  CAS  Google Scholar 

  • Baldessarini RJ, Hegarty JD, Bird ED, Benes FM (1997) Meta-analysis of postmortem studies of Alzheimer’s disease- like neuropathology in schizophrenia. Am J Psychiatry 154:861–863

    CAS  PubMed  Google Scholar 

  • Barrera A, Jiménez- González A, Montiel J, Aboitiz F (2001) Dendritic structure of single hippocampal neurons according to sex and hemisphere or origin in middle-aged and elderly human subjects. Brain Res 906:31–37

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G (2002) Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 27:672–683

    Article  PubMed  Google Scholar 

  • Benes FM (1999) Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry 46:589–599

    CAS  PubMed  Google Scholar 

  • Benes FM, Davidson J, Bird ED (1986) Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 43:31–35

    Google Scholar 

  • Benes FM, Sorensen I, Bird ED (1991) Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 17:597–608

    CAS  PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484.

    CAS  PubMed  Google Scholar 

  • Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996) Differences in the subregional and cellular distribution of GABA, receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–349

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) Reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    Google Scholar 

  • Benes FM, Todtenkopf MS, Kostoulakos P (2001) GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus 11:482–491

    Article  CAS  PubMed  Google Scholar 

  • Bernstein H-G, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H, Bogerts B (1998) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33:125–132

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Nawroz S, Mattay VS, Barnett AS, Duyn JH, Moonen CTW, Frank JA, Tedeschi G (1996) Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 153:1554–1563

    CAS  PubMed  Google Scholar 

  • Bertolino A, Callicott JH, Elman I, Duyn JH, Tedeschi G, Frank JA et al. (1998) Regionally specific neurochemical pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 43:641–648

    Article  CAS  PubMed  Google Scholar 

  • Blakemore CB, Falconer M (1967) Long term effects of anterior temporal lobectomy on certain cognitive functions. J Neurol Neurosurg Psychiatry 30:364–367

    CAS  PubMed  Google Scholar 

  • Bogerts B, Meertz E, Schonfeldt-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia. Arch Gen Psychiatry 42:784–791

    Google Scholar 

  • Bogerts B, Ashtari M, Degreef G, Alvir JMJ, Bilder RM, Lieberman JA (1990) Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Res 35:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bozikas VP, Kövari E, Bouras C, Karavatos A (2002) Neurofibillary tangles in elderly patients with late onset schizophrenia. Neurosci Lett 324:109–112

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Colter N, Corsellis JAN, Crow TJ, Frith CD, Jagoe R, Johnstone EC, Marsh L (1986) Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry 43:36–42

    CAS  PubMed  Google Scholar 

  • Browning MD, Dudek EM, Rapier JL, Leonard S, Freedman R (1993) Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 34:529–535

    Article  CAS  PubMed  Google Scholar 

  • Bruton CJ, Crow TJ, Frith CD, Johnstone EC, Owens DGC, Roberts GW (1990) Schizophrenia and the brain: a prospective clinico-neuropathological study. Psychol Med 20:285–304

    CAS  PubMed  Google Scholar 

  • Burnet PWJ, Eastwood SL, Harrison PJ (1996) 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially affected in schizophrenia. Neuropsychopharmacology 15:442–455

    CAS  PubMed  Google Scholar 

  • Cannon TD, van Erp GM, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T, Salonen O, Valanne L, Poutanen V-P, Standertskjö-Nordenstam C-G (2002) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59:35–41

    Article  PubMed  Google Scholar 

  • Casanova MF, Rothberg B (2002) Shape distortion of the hippocampus: a possible explanation of the pyramidal cell disarray reported in schizophrenia. Schizophr Res 55:19–24

    Article  PubMed  Google Scholar 

  • Casanova MF, Stevens JR, Brown R, Royston C, Bruton C (2002) Disentangling the pathology of schizophrenia and paraphrenia. Acta Neuropathol 103:313–320

    Article  CAS  PubMed  Google Scholar 

  • Chambers JS, Thomas D, Saland L, Neve R, Perrone-Bizzozero NI (2003) GAP-43 and synaptophysin immunostaining reveal subtle alterations in the dentate gyrus of patients with schizophrenia [Abstract]. Schizophr Res 60:69

    Article  Google Scholar 

  • Christison GW, Casanova MF, Weinberger DR, Rawlings R, Kleinman JE (1989) A quantitative investigation of hippocampal pyramidal cell size, shape, and variability of orientation in schizophrenia. Arch Gen Psychiatry 46:1027–1032

    CAS  PubMed  Google Scholar 

  • Conrad AJ, Abebe T, Austin R, Forsythe S, Scheibel AB (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry 48:413–417

    CAS  PubMed  Google Scholar 

  • Cotter D, Kerwin R, Doshi B, Martin CS, Everall IP (1997) Alterations in hippocampal non-phosphorylated MAP2 protein expression in schizophrenia. Brain Res 765:238–246

    Article  CAS  PubMed  Google Scholar 

  • Cotter D, Wilson S, Roberts E, Kerwin R, Everall IP (2000) Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res 41:313–323

    Article  CAS  PubMed  Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595

    Article  CAS  PubMed  Google Scholar 

  • Crow TJ (1990) Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull 16:433–443

    CAS  PubMed  Google Scholar 

  • Crow TJ, Ball J, Bloom SR, Brown R, Bruton CJ, Colter N, Frith CD, Johnstone EC, Owens DGC, Roberts GW (1989) Schizophrenia as an anomaly of development of cerebral asymmetry. Arch Gen Psychiatry 46:1145–1150

    CAS  PubMed  Google Scholar 

  • Csernansky JG, Wang L, Jonmes D, Rastogi-Cruz D, Posener JA, Heydebrand G, Miller JP, Miller MI (2002) Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 159:2000–2006

    Article  PubMed  Google Scholar 

  • Damadzic R, Biegelow L, Krimer LS, Goldenson DA, Saunders RC, Kleinman JE, Herman MM (2001) A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: absence of significant astrocytosis. Brain Res Bull 55:611–618

    CAS  PubMed  Google Scholar 

  • Damadzic R, Shuangshoti S, Givlen G, Herman MM (2002) Neuritic pathology is lacking in the entorhinal cortex subiculum and hippocampus in middle-aged adults with schizophrenia, bipolar disorder or unipolar depression. Acta Neuropathol 103:488–494

    Article  PubMed  Google Scholar 

  • Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries CG, Blennow K (1999) The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr Res 40:23–29

    Article  CAS  PubMed  Google Scholar 

  • Davis, KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456

    Article  PubMed  Google Scholar 

  • Dean B, Scarr E, Bradbury R, Copolov D (1999) Decreased hippocampal (CA3) NMDA receptors in schizophrenia. Synapse 32:67–69

    Article  PubMed  Google Scholar 

  • Deicken RF, Pegues M, Amend D (1999) Reduced hippocampal N-acetylaspartate without volume loss in schizophrenia. Schizophr Res 37:217–223

    CAS  PubMed  Google Scholar 

  • DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synaptic change. Neurodegeneration 5:417–421

    Article  CAS  PubMed  Google Scholar 

  • DeLisi L (1997) Is schizophrenia a lifetime disorder of brain plasticity, growth and aging? Schizophr Res 23:119–129

    Article  CAS  PubMed  Google Scholar 

  • De Toledo-Morrell L, Dickerson B, Sullivan MP, Spanovic C, Wilson R, Bennett DA (2000) Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer’s disease. Hippocampus 10:136–142

    Article  PubMed  Google Scholar 

  • Dickey CC, McCarley RW, Shenton MR (2002) The brain in schizoptypal personality disorder: a review of structural MRI and CT findings. Harvard Rev Psychiatry 10:1–15

    Google Scholar 

  • Duvernoy HM (1998) The human hippocampus. Functional anatomy, vascularization and serial sections with MRI, 2nd edition. Springer, Berlin

  • Dwork AJ (1997) Postmortem studies of the hippocampal formation in schizophrenia. Schizophr Bull 23:385–402

    CAS  PubMed  Google Scholar 

  • East SZ, Burnet PWJ, Kerwin RW, Harrison PJ (2002) An RT-PCR study of 5-HT6 and 5-HT7 receptor mRNA expression in the hippocampal formation and dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:15–26

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (1995) Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 69:339–343

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (1998) Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience 86:437–448

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (1999) Detection and quantification of hippocampal synaptophysin messenger RNA in schizophrenia using autoclaved, formalin-fixed, paraffin wax-embedded sections. Neuroscience 93:99–106

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2000) Hippocampal synaptic pathology in schizophrenia bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5:425–432

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2004) Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 8:821–831

    Article  CAS  Google Scholar 

  • Eastwood SL, Burnet PWJ, McDonald B, Clinton J, Harrison PJ (1994) Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study. Neuroscience 59:881–892

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ (1995a) Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 66:309–319

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, McDonald B, Burnet PWJ, Beckwith JP, Kerwin RW, Harrison PJ (1995b) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Mol Brain Res 29:211–223

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ (1997a) GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase-polymerase chain reaction (RT-PCR) study. Mol Brain Res 44:92–98

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Kerwin RW, Harrison PJ (1997b) Immunoautoradiographic evidence for a loss of -amino-3-hydroxy-5-methyl-4 isoxazole propionate-preferring non-N-methyl-d-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psychiatry 41:636–643

    Article  PubMed  Google Scholar 

  • Eastwood SL, Heffernan J, Harrison PJ (1997c) Chronic haloperidol differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol Psychiatry 2:322–329

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Cairns NJ, Harrison PJ (2000a) Synaptophysin gene expression in schizophrenia: investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 176:236–242

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Burnet PWJ, Harrison PJ (2000b) Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 36:167–177

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Law AJ, Everall IP, Harrison PJ (2003) The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 8:148–155

    Article  CAS  PubMed  Google Scholar 

  • Egan MF, Kojima M, Callicot JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function Cell 112:257–269

    Google Scholar 

  • Eichenbaum H, Otto T, Cohen NJ (1994) Two functional components of the hippocampal memory system. Behav Brain Sci 17:449–518

    Google Scholar 

  • Esiri MM, Pearson RCA (2000) Perspectives from other diseases and lesions. In: Harrison PJ, Roberts GW (eds) The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford, pp 257–276

  • Falkai P, Bogerts B (1986) Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatr Neurol Sci 236:154–161

    CAS  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988) Limbic pathology in schizophrenia: the entorhinal region—a morphometric study. Biol Psychiatry 24:515–521

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Honer WG, David S, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25:48–53

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Schneider-Axmann T, Honer WG (2000) Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 47:937–943

    Article  CAS  PubMed  Google Scholar 

  • Falkai PG, Kovalenko S, Schneider-Axmann T, Ovary I, Honer WG (2003) Second replication of disturbed pre-alpha-cell migration in the entorhinal cortex of schizophrenic patients [Abstract]. Schizophr Res 60:71

    Article  PubMed  Google Scholar 

  • Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 12:3257–3262

    Article  CAS  PubMed  Google Scholar 

  • Flor-Henry P (1969) The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol 52:433–443

    Google Scholar 

  • Freedman R, Adams Ce, Leonard S (2000) The 7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20:299–306

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RSJ (1992) The left medial temporal region and schizophrenia. A PET study. Brain 115:367–382

    PubMed  Google Scholar 

  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Goldberg TE, Torrey EF, Berman KF, Weinberger DR (1994) Relations between neuropsychological performance and brain morphological and physiological measures in monozygotic twins discordant for schizophrenia. Psychiatr Res Neuroimaging 55:51–61

    Article  CAS  Google Scholar 

  • Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Rev 31:330–341

    CAS  PubMed  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–84

    Google Scholar 

  • Greene JRT (1996) The subiculum: a potential site of action for novel antipsychotic drugs. Mol Psychiatry 1:380–387

    CAS  PubMed  Google Scholar 

  • Gur RE, McGrathC, Chan RM, Schroeder L, Turner T, Turetsky BI, Kohler C, Alsop D, Maldjian J, Ragland JD, Gur RC (2002) A fMRI study of facial emotional processing I patients with schizophrenia. Am J Psychiatry 159:1992–1999

    Article  PubMed  Google Scholar 

  • Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751

    CAS  PubMed  Google Scholar 

  • Harrison PJ (1995) On the neuropathology of schizophrenia and its dementia: neurodevelopmental, neurodegenerative, or both? Neurodegeneration 4:1–12

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1997) Schizophrenia: a disorder of neurodevelopment? Curr Opin Neurobiol 7:285–289

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1999a) The neuropathology of schizophrenia—a critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Harrison PJ (1999b) The neuropathological effects of antipsychotic drugs. Schizophr Res 40:87–99

    Google Scholar 

  • Harrison PJ (2002) The neuropathology of primary mood disorder. Brain 125:1428–1449

    Article  PubMed  Google Scholar 

  • Harrison PJ (2004) Schizophrenia and its dementia. In: Esiri MM, Trojanowski JQ, Lee V-MY (eds) The neuropathology of dementia, 2nd edn (in press)

  • Harrison PJ, Eastwood SL (1998) Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 352:1669–1673

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Eastwood SL (2001) Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 11:508–519

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Eastwood SL (2003) Vesicular glutamate transporter (VGLUT) gene expression provides further evidence for glutamatergic synaptic pathology in the hippocampus in schizophrenia [Abstract]. Schizophr Res 60:62–63

    Article  Google Scholar 

  • Harrison PJ, Kleinman JE (2000) Methodological issues. In: Harrison PJ, Roberts GW (eds) The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford, pp 339–350

  • Harrison PJ, Lewis DA (2003) The neuropathology of schizophrenia. In: Hirsch SR, Weinberger D (eds) Schizophrenia, 2nd edition. Blackwell Science, Oxford, pp 306–317

  • Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Roberts (2000) The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford

  • Harrison PJ, McLauglin D, Kerwin RW (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337:450–452

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Burnet PWJ, Falkai P, Bogerts B, Eastwood SL (1997) Gene expression and neuronal activity in schizophrenia: a study of polyadenylated mRNA in the hippocampal formation and cerebral cortex. Schizophr Res 26:93–102

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann N Y Acad Sci 1003:94–101

    Article  CAS  PubMed  Google Scholar 

  • Harvey PD, Silverman JM, Mohs RC, Parrella M, White L, Powchik P et al. (1999) Cognitive decline in late-life schizophrenia: a longitudinal study of geriatric chronically hospitalized patients. Biol Psychiatry 45:32–40

    Google Scholar 

  • Haydon PG (2001) Glia: listening and talking to the synapse. Nature Rev Neurosci 2:185–193

    Article  CAS  Google Scholar 

  • Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11:520–528

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Konradi C (2002) Hippocampal neurons in schizophrenia. J Neural Transm 109:891–905

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia: a stereological study. Arch Gen Psychiatry 48:1002–1008

    CAS  PubMed  Google Scholar 

  • Heckers S, Rauch SL, Goff DC, Savage CR, Schacter DL, Fischman AJ, Alpert NM (1998) Impaired recruitment of the hippocamps during conscious recollection in schizophrenia. Nat Neurosci 1:318–323

    Article  CAS  PubMed  Google Scholar 

  • Heffernan JM, Eastwood SL, Nagy Z, Sanders MW, McDonald B, Harrison PJ (1998) Temporal cortex synaptophysin mRNA is reduced in Alzheimer’s disease and is negatively correlated with the severity of dementia. Exp Neurol 150:235–239

    Article  CAS  PubMed  Google Scholar 

  • Hemby SE, Ginsberg SD, Brunk B, Arnold SE, Trojanowski, Eberwine JH (2002) Gene expression profile for schizophrenia. Arch Gen Psychiatry 59:631–640

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Haroutunian V, Friedrich VL Jr, Byne W, Buitron C, Perl DP, Davis KL (2003) Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Holinger DP, Galaburda AM, Harrison PJ (2000) Cerebral asymmetry. In: Harrison PJ, Roberts GW (eds) The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford, pp 151–171

  • Honer WG, Young C, Falkai P (2000) Synaptic pathology. In Harrison PJ, Roberts GW, editors. The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford, pp 105–136

  • Ince PG, Slade J, Chinnery RM, McKenzie J, Royston C, Roberts GW, Shaw PJ (1995) Quantitative study of synaptophysin immunoreactivity of cerebral cortex and spinal cord in motor neuron disease. J Neuropathol Exp Neurol 54:673–679

    CAS  PubMed  Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    CAS  PubMed  Google Scholar 

  • Jellinger KA, Gabriel E (1999) No increased incidence of Alzheimer’s disease in elderly schizophrenics. Acta Neuropathol 97:165–169

    Article  CAS  PubMed  Google Scholar 

  • Jessen F, Scheef L, Germeshausen L, Tawo Y, Kocklet M, Kuhn K-U, Maier W, Schild HH, Heun R (2003) Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry 160:1305–1312

    Article  PubMed  Google Scholar 

  • Jeste DV, Lohr JB (1989) Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry 46:1019–1024

    CAS  PubMed  Google Scholar 

  • Jones PB, Done DJ (1997) From birth to onset: a developmental perspective of schizophrenia in two national birth cohorts. In: Keshavan MS, Murray RM (eds) Neurodevelopment and adult psychopathology. Cambridge University Press, Cambridge, pp 119–136

  • Jonsson SAT, Luts A, Guldberg-Kjaer N, Brun A (1997) Hippocampal pyramidal cell disarray correlates negatively to cell number: implications for the pathogenesis of schizophrenia. Eur Arch Psychiatry Neurol Sci 247:120–127

    CAS  Google Scholar 

  • Joyal CC, Laakso MP, Tiihonen J, Syvälahti E, Vilkman H, Laakso A, Alakare B, Räkköläinen V, Raimo KR, Kietala S, Hietala J (2002) A volumetric MRI study of the entorhinal cortex in first episode neuroleptic-naïve schizophrenia. Biol Psychiatry 51:1005–1007

    Article  PubMed  Google Scholar 

  • Joyce JN, Shane A, Lexow N, Winokur A, Casanova M, Kleinman JE (1993) Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsychopharmacology 8:315–336

    CAS  PubMed  Google Scholar 

  • Kerwin RW, Patel S, Meldrum BS, Czudek C, Reynolds GP (1988) Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia (letter). Lancet 1:583–584

    CAS  Google Scholar 

  • Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32

    Article  PubMed  Google Scholar 

  • Keshavan MS, Anderson S, Pettegrew JW (1993) Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex—the Feinberg hypothesis revisited. J Psychiatr Res 28:239–265

    Article  Google Scholar 

  • Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y (1999) Synapses in the hereditary ataxias. J Neuropathol Exp Neurol 58:748–764

    CAS  PubMed  Google Scholar 

  • Konradi C, Heckers S (2001) Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 50:729–742

    Article  PubMed  Google Scholar 

  • Kovelman JA, Scheibel A (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19:1601–1621

    Google Scholar 

  • Krimer LS, Herman MM, Saunders RC, Boyd JC, Hyde TM, Carter JM, Kleinman JE, Weinberger DR (1997) A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 7:732–739

    Article  CAS  PubMed  Google Scholar 

  • Kuroki N, Matsushita M (1998) Pyramidal cell orientation and density in the hippocampus in schizophrenia. Neuropathology 18:235–241

    Google Scholar 

  • Lauer M, Beckmann H, Senitz D (2003) Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res Neuroimaging 122:89–97

    Article  Google Scholar 

  • Law AJ, Deakin JFW (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. NeuroRep 12:2971–2974

    Article  CAS  Google Scholar 

  • Law AJ, Shannon Weickert C, Hyde TM, Kleinman JE, Harrison PJ (2004) Reduced spinophilin but not MAP2 expression in the hippocampal formation in schizophrenia and mood disorder: molecular evidence for a pathology of dendritic spines. Am J Psychiatry (in press)

    Google Scholar 

  • Lawrie S, Abukmeil S (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120

    CAS  PubMed  Google Scholar 

  • Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A, Rimmington JE, Best JJK, Owens DGC, Johnstone EC (1999) Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353:30–33

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA (2002) The human brain revisited: opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology 26:143–154

    Article  PubMed  Google Scholar 

  • Lewis DA (2004) Psychopharmacology

  • Lewis DA, Akil M (1997) Cortical dopamine in schizophrenia: strategies for postmortem studies. J Psychiatr Res 31:175–195

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA (1999) Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 46:616–626

    CAS  PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia a a reality test. Neuropsychopharmacology 23:223–239

    CAS  PubMed  Google Scholar 

  • Lipton AM, Cullum CM, Satumtira S, Sontag E, Hynan LS, White CL III, Bigio EH (2001) Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. Ann Neurol 58:1233–1239

    Article  CAS  Google Scholar 

  • Maier M, Ron MA, Barker GJ, Tofts PS (1995) Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychol Med 25:1201–1209

    CAS  PubMed  Google Scholar 

  • Manns JR, Hopkins RO, Squire LR (2003) Semantic memory and the human hippocampus. Neuron 38:127–133

    CAS  PubMed  Google Scholar 

  • Markovitsch HJ (1995) Anatomical basis of memory disorders. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, Mass., pp 765–779

  • Martin RC, SawrieS, Hugg J, Gilliam F, Faught E, Kuzniecky R (1999) Cognitive correlates of ‘H MRSI-detected hippocampal abnormalities in temporal lobe epilepsy. Neurology 53:2052–2058

    CAS  PubMed  Google Scholar 

  • Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10:509–519

    CAS  PubMed  Google Scholar 

  • Masliah E, Terry RD (1993) The role of synaptic proteins in the pathogenesis of disorders of the central nervous system. Brain Pathol 3:77–86

    CAS  PubMed  Google Scholar 

  • Masliah E, Terry RD, Alford M, DeTeresa R (1990) Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J Histochem Cytochem 38:837–844

    CAS  PubMed  Google Scholar 

  • McBride T, Moberg PJ, Arnold SE, Mozley LH, Mahr RN, Giney M, Kumar A, Gur RE (2002) Neuropsychological functioning in elderly patients with schizophrenia and Alzheimer’s disease. Schizophr Res 55:217–227

    Article  PubMed  Google Scholar 

  • McClure RK, Lieberman JA (2003) Neurodevelopmental and neurodegenerative hypotheses of schizophrenia: a review and critique. Curr Opin Psychiatry 16:S15–S28

    Article  Google Scholar 

  • McDonald B, Highley J, Walker M, Herron B, Cooper S, Esiri MM, Crow TJ (2000) Anomalous asymmetry of fusiform and parahippocampal gyrus gray matter in schizophrenia: a postmortem study. Am J Psychiatry 157:40–47

    CAS  PubMed  Google Scholar 

  • McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57:637–648

    CAS  PubMed  Google Scholar 

  • Medoff DR, Holbomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11:543–550

    Article  CAS  PubMed  Google Scholar 

  • Milner B (1968) Visual recognition and recall after temporal lobe excision in man. Neuropsychologia 6:191–209

    Article  Google Scholar 

  • Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24:479–486

    Article  CAS  PubMed  Google Scholar 

  • Moises HW, Zoega T, Gottesman I (2002) The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2:8

    Article  PubMed  Google Scholar 

  • Murphy GM Jr, Lim KO, Wieneke M, Ellis WG, Forno LS, Hoff AL, Nordahl T (1998) No neuropathologic evidence for an increased frequency of Alzheimer’s disease among elderly schizophrenics. Biol Psychiatry 43:205–209

    PubMed  Google Scholar 

  • Murray RM, Lewis S (1987) Is schizophrenia a neurodevelopmental disorder? BMJ 295:681–682

    CAS  PubMed  Google Scholar 

  • Murthy VN, De Camilli P (2003) Cell biology of the presynaptic terminal. Annu Rev Neurosci 26:701–728

    Article  CAS  PubMed  Google Scholar 

  • Nanko S (2002) Possible effect of the APOE 4 allele on the hippocampal volume and asymmetry in schizophrenia. Am J Med Genet 114:641–642

    Article  PubMed  Google Scholar 

  • Narr KL, van-Erp TG, Cannon TD, Woods RP, Thompson PM, Jang S, Blanton R, Poutanen VP, Huttuen M, Lonnqvist J, Standerksjold-Nordenstam CG, Kaprio J, Mazziotta JC, Toga AW (2002) A twin study of genetic contributions to hippocampal morphology in schizophrenia. Neurobiol Dis 11:83–95

    Article  PubMed  Google Scholar 

  • Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging—a meta-analytic study. Arch Gen Psychiatry 55:433–440

    CAS  PubMed  Google Scholar 

  • Novak G, Kim D, Seeman P, Tallerico T (2002) Schizophrenia and Nogo: elevated mRNA in cortex, and high prevalence of a homozygous CAA insert. Mol Brain Res 107:183–189

    Article  CAS  PubMed  Google Scholar 

  • Novakowski C, Kaufmann WA, Adlassnig C, Maier H, Salim K, Jellinger KA, Marksteiner J (2002) Reduction of chromogranin B-like immunoreactivity in distinct subregions of the hippocampus from individuals with schizophrenia. Schizophr Res 58:43–53

    Article  PubMed  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    CAS  PubMed  Google Scholar 

  • Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  • Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286

    CAS  PubMed  Google Scholar 

  • Port RL, Seybold KS (1995) Hippocampal synaptic plasticity as a biological substrate underlying episodic psychosis. Biol Psychiatry 37:318–324

    Article  CAS  PubMed  Google Scholar 

  • Porter RHP, Eastwood SL, Harrison PJ (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751:217–231

    Article  CAS  PubMed  Google Scholar 

  • Prohovnik I, Dwork AJ, Kaufman MA, Wilson N (1993) Alzheimer-type neuropathy in elderly schizophrenia patients. Schizophr Bull 19:805–816

    CAS  PubMed  Google Scholar 

  • Purohit DP, Peri DP, Haroutunian V, Powchik P, Davidson M, Davies KL (1998) Alzheimer disease and related neurodegeneration diseases in elderly patients with schizophrenia—a postmortem neuropathologic study of 100 cases. Arch Gen Psychiatry 55:205–211

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Czudek C, Andrews HB (1990) Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry 27:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Religa D, Laudon H, Styczynska M, Winblad B, Näslund J, Haroutunian V (2003) Amyloid pathology in Alzheimer’s disease and schizophrenia. Am J Psychiatry 160:867–872

    Article  PubMed  Google Scholar 

  • Roberts GW (1991) Schizophrenia: a neuropathological perspective. Br J Psychiatry 158:8–17

    CAS  PubMed  Google Scholar 

  • Roberts GW, Harrison PJ (2000) Gliosis and its implications for the disease process. In: Harrison PJ, Roberts GW (eds) The neuropathology of schizophrenia. Progress and interpretation. Oxford University Press, Oxford, pp 137–150

  • Roberts GW, Colter N, Lofthouse R, Bogerts B, Zech M, Crow TJ (1986) Gliosis in schizophrenia: a survey. Biol Psychiatry 21:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Roberts GW, Colter N, Lofthouse R, Johnstone E, Crow TJ (1987) Is there gliosis in schizophrenia? Investigation of the temporal lobe. Biol Psychiatry 22:1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Roberts GW, Done DJ, Bruton C, Crow TJ (1990) A “mock up” of schizophrenia: temporal lobe epilepsy and schizophrenia-like psychosis. Biol Psychiatry 28:127–143

    Article  CAS  PubMed  Google Scholar 

  • Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP, Dwork AJ (2000) Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders—preliminary findings. Arch Gen Psychiatry 57:349–356

    Article  CAS  PubMed  Google Scholar 

  • Sachdev P (1998) Schizophrenia-like psychosis and epilepsy: the status of the association. Am J Psychiatry 155:325–336

    CAS  PubMed  Google Scholar 

  • Sanfilipo M, Lafargue T, Rusinek H, Arena L, Lonergagan C, Lautin A, Rotrosen J, Wolkin A (2002) Cognitive performance in schizophrenia: relationship to regional brain volumes and psychiatric symptoms. Psychiatry Res 116:1–23

    Article  PubMed  Google Scholar 

  • Sawada K, Barr AM, Takahashi S, Arima K, Falkai P, Phillips A, Honer WG (2003) Complexins I and II in hippocampus in schizophrenia [Abstract]. Schizophr Res 60:74–75

    Article  Google Scholar 

  • Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51:124–131

    CAS  PubMed  Google Scholar 

  • Schmajuk NA (2001) Hippocampal dysfunction in schizophrenia. Hippocampus 11:599–613

    Article  CAS  PubMed  Google Scholar 

  • Schultze K, McDonald C, Frangou S, Sham P, Grech A, Toulopoulou T, Walshe M, Sharma T, Sigmundsson T, Taylor M, Murray RA (2003) Hippocampal volume in familial and nonfamilial schizophrenic probands and their unaffected relatives. Biol Psychiatry 53:562–570

    Article  PubMed  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex—a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818

    CAS  PubMed  Google Scholar 

  • Senitz D, Beckmann H (2003) Granule cells of the dentate gyrus with basal and recurrent dendrites in schizophrenic patients and controls. A comparative Golgi study. J Neural Transm 110:317–326

    CAS  PubMed  Google Scholar 

  • Simpson MDC, Slater P, Deakin JFW (1998) Comparison of glutamate and gamma-aminobutyric acid uptake binding sites in frontal and temporal lobes in schizophrenia. Biol Psychiatry 44:423–427

    Article  CAS  PubMed  Google Scholar 

  • Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL (2000) Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48:184–196

    Google Scholar 

  • Stefanis N, Frangou S, Yakeley J, Sharma T, O’Connell P, Morgan K, Signmudsson T, Taylor M, Murray R (1999) Hippocampal volume reduction in schizophrenia: effects of genetic risk and pregnancy and birth complications. Biol Psychiatry 46:697–702

    Article  CAS  PubMed  Google Scholar 

  • Stevens JR (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39:1131–1139

    CAS  PubMed  Google Scholar 

  • Stevens JR (1992) Abnormal reinnervation as a basis for schizophrenia. Arch Gen Psychiatry 49:238–243

    CAS  PubMed  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    CAS  PubMed  Google Scholar 

  • Sze C-I, Bi H, Kleinschmidt-DeMasters B, Filley CM, Martin LJ (2000) Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brains. J Neurol Sci 175:81–90

    Article  CAS  PubMed  Google Scholar 

  • Szeszko PR, Strous RD, Goldman RS, Ashtari M, Knuth KH, Lieberman JA, Bilder RM (2002) Neuropsychological correlates of hippocampal volumes in patients experiencing a first episode of schizophrenia. Am J Psychiatry 159:217–226

    Article  PubMed  Google Scholar 

  • Takahashi S, Yamamoto H, Matsuda Z, Ogawa M, Yagyu K, Taniguchi T, Miyata T, Kaba H, Higuchi T, Okutani F, Fujimoto S (1995) Identification of two highly homologous presynaptic proteins distinctly localized at the dendritic and somatic synapses. FEBS Lett 368:455–460

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Ujihara H, Huang GZ, Yagyu K, Sanbo M, Kaba H, Yagi T (1999) Reduced hippocampal LTP in mice lacking a presynaptic protein, complexin II. Eur J Neurosci 11:2359–2366

    Article  CAS  PubMed  Google Scholar 

  • Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, Carpenter WT (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49:522–530

    CAS  PubMed  Google Scholar 

  • Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 99:1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Tcherepanov AA, Sokolov BP (1997) Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J Neurosci 49:639–644

    Article  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Google Scholar 

  • Thompson PM, Egbufoama S, Vawter MP (2003) SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:411–417

    Article  CAS  PubMed  Google Scholar 

  • Todtenkopf MS, Benes F (1998) Distribution of glutamate decarboxylase65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse 29:323–332

    Article  CAS  PubMed  Google Scholar 

  • Torrey EF, Peterson MR (1974) Schizophrenia and the limbic system. Lancet 2:942–946

    CAS  PubMed  Google Scholar 

  • Tsai G, Passani LA, Slusher BS, Carter R, Baer L, Kleinman J, Coyle JT (1995) Abnormal excitatory transmitter metabolism in schizophrenia brains. Arch Gen Psychiatry 52:829–836

    CAS  PubMed  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KA, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    Article  CAS  PubMed  Google Scholar 

  • Van Erp TGM, Saleh PA, Rosso IM, Huttunen M, Lnnqvist J, Pirkila T, Solonen O, Valanne L, Poutanen VP, Standertskjld-Nordenstam CG, Cannon TD (2002) Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 159:1514–1520

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Augustinack JC, Redman SJ (1999) Ventromedial temporal lobe pathology in dementia, brain trauma, and schizophrenia. Ann N Y Acad Sci 877:575–594

    PubMed  Google Scholar 

  • Vawter MP, Hyde TM, Kleinman JE, Freed WJ (1999) Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol Psychiatry 4:467–475

    Article  CAS  PubMed  Google Scholar 

  • Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ (2002) Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 7:571–579

    Article  CAS  PubMed  Google Scholar 

  • Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M, Desmond P, Bridle N, Tierney P, Murrie V, Singh B, Copolov D (1999) Hippocampal volume in first-episode psychoses and chronic schizophrenia. Arch Gen Psychiatry 56:133–141

    CAS  PubMed  Google Scholar 

  • Venables PH (1992) Hippocampal function and schizophrenia: experimental psychological evidence. Ann N Y Acad Sci 658:111–127

    CAS  PubMed  Google Scholar 

  • Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP, Crow TJ (2002) Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry 159:821–828

    Article  PubMed  Google Scholar 

  • Webster MJ, Weickert CS, Herman MM, Hyde TM, Kleinman JE (2001) Synaptophysin and GAP-43 mRNA levels in the hippocampus of subjects with schizophrenia. Schizophr Res 49:89–98

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–689

    CAS  PubMed  Google Scholar 

  • Weinberger DR (1995) From neuropathology to neurodevelopment. Lancet 346:552–557

    CAS  PubMed  Google Scholar 

  • Weinberger DR (1999) Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45:395–402

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, McClure RK (2002) Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain? Arch Gen Psychiatry 59:553–558

    Article  PubMed  Google Scholar 

  • Weiss AP, Schacter DL, Goff DC, Rauch SL, Alpert NM, Fischman AJ, Heckers S (2003) Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biol Psychiatry 53:4855

    Article  Google Scholar 

  • West MJ, Coleman PD, Floord DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    CAS  PubMed  Google Scholar 

  • Wisniewski HM, Constantinidis J, Wegiel J, Bobinkski M, Tarnawski M (1994) Neurofibrillary pathology in brains of elderly schizophrenics treated with neuroleptics. Alz Dis Assoc Disord 8:211–227

    CAS  Google Scholar 

  • Woods BT (1998) Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155:1661–1670

    CAS  PubMed  Google Scholar 

  • Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25

    CAS  PubMed  Google Scholar 

  • Yao PJ, Zhu M, Pyrun EI, Brooks AI, Therianos S, Meyers VE et al. (2003) Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiol Dis 12:97–109

    Article  CAS  PubMed  Google Scholar 

  • Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8:261–268

    Article  CAS  PubMed  Google Scholar 

  • Zaidel DW, Esiri MM, Eastwood SL, Harrison PJ (1995) Asymmetrical hippocampal circuitry and schizophrenia. Lancet 345:656–657

    Article  CAS  Google Scholar 

  • Zaidel DW, Esiri M, Harrison PJ (1997a) Size, shape, and orientation of neurons in the left and right hippo- campus: Investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 154:812–818

    CAS  PubMed  Google Scholar 

  • Zaidel DW, Esiri MM, Harrison PJ (1997b) The hippocampus in schizophrenia: lateralized increase in neuronal density and altered cytoarchitectural asymmetry. Psychol Med 27:703–713

    CAS  PubMed  Google Scholar 

  • Zakzanis KK, Andrikopoulos J, Young DA, Campbell Z, Sethian T (2003) Neuropsychological differentiation of late-onset schizophrenia and dementia of the Alzheimer’s type. Appl Neuropsychol 10:105–114

    Article  PubMed  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55:1–10

    Article  PubMed  Google Scholar 

  • Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, Bellen HJ (1998) Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21:1465–1475

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR (1993) Neuroanatomy of memory. Annu Rev Neurosci 16:547–563

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author’s research is supported by a Centre Award from the Stanley Medical Research Institute, and by the Wellcome Trust. I am indebted to Sharon Eastwood for her central role in this work over the past 10 years, and to Amanda Law and other members of the group who have contributed to our hippocampal studies. Thanks also to Margaret Cousin for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, P.J. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 174, 151–162 (2004). https://doi.org/10.1007/s00213-003-1761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1761-y

Keywords

Navigation