Skip to main content

Advertisement

Log in

Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic antidepressant treatment increases glucocorticoid-mediated negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis, and thus reduces HPA axis activity, in depressed patients and healthy controls. In contrast, acute antidepressant treatment induces an activation of basal HPA axis activity.

Objectives

We examined the effects of 4 days of treatment with the selective serotonin reuptake inhibitor, citalopram, on basal salivary cortisol and on suppression of salivary cortisol by prednisolone.

Methods

We used a single-blind, placebo-controlled, repeated-measure design. Salivary cortisol was measured from 0900 to 1700 hours. In the first phase of the study, basal salivary cortisol secretion was measured on 2 study days, before and after 4 days of treatment with citalopram (orally, 20 mg/day). In the second phase, salivary cortisol secretion after suppression by prednisolone (5 mg, given at 2200 hours the night before) was measured on 2 study days, again before and after 4 days of treatment with citalopram (orally, 20 mg/day). Eight volunteers participated to the study.

Results

Citalopram increased basal salivary cortisol in the morning (0900–1100 hours) by approximately 47% (P=0.003). Moreover, citalopram increased suppression by prednisolone in the morning (0900–1100 hours): suppression was approximately 22% before citalopram and 45% after citalopram (P=0.05).

Conclusions

Citalopram increases glucocorticoid-mediated negative feedback on the HPA axis after as little as 4 days of treatment. This effect could be due to an increased function of the corticosteroid receptors. Our findings further support the notion that one of the mechanisms by which antidepressants exert their therapeutic effects is by normalizing HPA axis hyperactivity in depressed patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arana GW, Baldessarini RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry 42:1193–1204

    CAS  PubMed  Google Scholar 

  • Attenburrow MJ, Mitter PR, Whale R, Terao T, Cowen PJ (2001) Low-dose citalopram as a 5-HT neuroendocrine probe. Psychopharmacology 155:323–326

    CAS  PubMed  Google Scholar 

  • von Bardeleben U, Steiger A, Gerken A, Holsboer F (1989) Effects of fluoxetine upon pharmacoendocrine and sleep-EEG parameters in normal controls. Int Clin Psychopharmacol 4(Suppl 1):1–5

    Google Scholar 

  • Bazire S (2003) Psychotropic drug directory 2003/04. Fipevin, Salisbury

  • Bhagwagar Z, Hafizi S, Cowen PJ (2002a) Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology 163:118–120

    Google Scholar 

  • Bhagwagar Z, Whale R, Cowen PJ (2002b) State and trait abnormalities in serotonin function in major depression. Br J Psychiatry 180:24–28

    PubMed  Google Scholar 

  • Bouwer C, Claassen J, Dinan TG, Nemeroff CB (2000) Prednisone augmentation in treatment-resistant depression with fatigue and hypocortisolaemia: a case series. Depress Anxiety 12:44–50

    Article  CAS  PubMed  Google Scholar 

  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ Jr (1992) The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain Res 572:117–125

    CAS  PubMed  Google Scholar 

  • Chakraborty J, English J, Marks V, Dumasia MC, Chapman DJ (1976) A radioimmunoassay method for prednisolone: comparison with the competitive protein binding method. Br J Clin Pharmacol 3:903–906

    CAS  PubMed  Google Scholar 

  • DeBattista C, Posener JA, Kalehzan BM, Schatzberg AF (2000) Acute antidepressant effects of intravenous hydrocortisone and CRH in depressed patients: a double-blind, placebo-controlled study. Am J Psychiatry 157:1334–1337

    Article  CAS  PubMed  Google Scholar 

  • Delbende C, Contesse V, Mocaer E, Kamoun A, Vaudry H (1991) The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. Eur J Pharmacol 202:391–396

    Article  CAS  PubMed  Google Scholar 

  • Deuschle M, Schmider J, Weber B, Standhardt H, Korner A, Lammers CH, Schweiger U, Hartmann A, Heuser I (1997) Pulse-dosing and conventional application of doxepin: effects on psychopathology and hypothalamus-pituitary-adrenal (HPA) system. J Clin Psychopharmacol 17:156–160

    Article  CAS  PubMed  Google Scholar 

  • Dinan TG, Lavelle E, Cooney J, Burnett F, Scott L, Dash A, Thakore J, Berti C (1997) Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand 95:58–61

    CAS  PubMed  Google Scholar 

  • Ebrecht M, Buske-Kirschbaum A, Hellhammer D, Kern S, Rohleder N, Walker B, Kirschbaum C (2000) Tissue specificity of glucocorticoid sensitivity in healthy adults. J Clin Endocrinol Metab 85:3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Bhagwagar Z, Shelley N, Cowen PJ (2003) Contrasting effects of citalopram and reboxetine on waking salivary cortisol. Psychopharmacology 167:112–114

    CAS  PubMed  Google Scholar 

  • Harris B, Watkins S, Cook N, Walker RF, Read GF, Riad-Fahmy D (1990) Comparisons of plasma and salivary cortisol determinations for the diagnostic efficacy of the dexamethasone suppression test. Biol Psychiatry 27:897–904

    Article  CAS  PubMed  Google Scholar 

  • Hennig J, Lange N, Haag A, Rohrmann S, Netter P (2000) Reboxetine in a neuroendocrine challenge paradigm: evidence for high cortisol responses in healthy volunteers scoring high on subclinical depression. Int J Neuropsychopharmacol 3:193–201

    Article  CAS  PubMed  Google Scholar 

  • Heuser IJ, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Dettling M, Yassouridis A, Holsboer F (1996) Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153:93–99

    CAS  PubMed  Google Scholar 

  • Karssen AM, Meijer OC, van der Sandt I, Lucassen PJ, de Lange EC, de Boer AG, de Kloet ER (2001) Multidrug resistance p-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142:2686–2694

    Article  CAS  PubMed  Google Scholar 

  • Laakmann G, Wittmann M, Gugath M, Mueller OA, Treusch J, Wahlster U, Stalla GK (1984) Effects of psychotropic drugs (desimipramine, chlorimipramine, sulpiride and diazepam) on the human HPA axis. Psychopharmacology 84:66–70

    CAS  PubMed  Google Scholar 

  • Laakmann G, Hinz A, Voderholzer U, Daffner C, Muller OA, Neuhauser H, Neulinger E, Wittmann M (1990) The influence of psychotropic drugs and releasing hormones on anterior pituitary hormone secretion in healthy subjects and depressed patients. Pharmacopsychiatry 23:18–26

    Google Scholar 

  • Linkowski P, Mendlewicz J, Kerkhofs M, Leclercq R, Golstein J, Brasseur M, Copinschi G, Van Cauter E (1987) 24-Hour profiles of adrenocorticotropin, cortisol, and growth hormone in major depressive illness: effect of antidepressant treatment. J Clin Endocrinol Metab 65:141–152

    CAS  PubMed  Google Scholar 

  • Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER (1998) Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A p-glycoprotein knockout mice. Endocrinology 139:1789–1793

    CAS  PubMed  Google Scholar 

  • Michelson D, Galliven E, Hill L, Demitrack M, Chrousos G, Gold P (1997) Chronic imipramine is associated with diminished hypothalamic-pituitary-adrenal axis responsivity in healthy humans. J Clin Endocrinol Metab 82:2601–2606

    CAS  PubMed  Google Scholar 

  • Montkowski A, Barden N, Wotjak C, Stec I, Ganster J, Meaney M, Engelmann M, Reul JM, Landgraf R, Holsboer F (1995) Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. J Neuroendocrinol 7:841–845

    CAS  PubMed  Google Scholar 

  • Muller MB, Keck ME, Binder EB, Kresse AE, Hagemeyer TP, Landgraf R, Holsboer F, Uhr M (2003) ABCB1 (MDR1)-type p-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28:1991–1999

    PubMed  Google Scholar 

  • Orth D, Kovacs W (1998) The adrenal cortex. In: Wilson J, Foster D, Kronenberg H, Larsen P (eds) Williams textbook of endocrinology. Saunders, Philadelphia, pp 517–664

  • Pariante CM (2003) Depression, stress and the adrenal axis. J Neuroendocrinol 15:811–812

    PubMed  Google Scholar 

  • Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49:391–404

    Google Scholar 

  • Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH, Kerwin RW (2001) Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 134:1335–1343

    CAS  PubMed  Google Scholar 

  • Pariante CM, Papadopoulos AS, Poon L, Checkley SA, English J, Kerwin RW, Lightman S (2002) A novel prednisolone suppression test for the hypothalamic-pituitary-adrenal axis. Biol Psychiatry 51:922–930

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Hye A, Williamson R, Makoff A, Lovestone S, Kerwin RW (2003a) The antidepressant clomipramine regulates cortisol intracellular concentrations and glucocorticoid receptor expression in fibroblasts and rat primary neurones. Neuropsychopharmacology 28:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Kim RB, Makoff A, Kerwin RW (2003b) Antidepressant fluoxetine enhances glucocorticoid receptor function in vitro by modulating membrane steroid transporters. Br J Pharmacol 139:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Thomas SA, Lovestone S, Makoff A, Kerwin RW (2004) Do antidepressants regulate how cortisol affects the brain? 2003 Curt Richter Award Paper. Psychoneuroendocrinology 29:423–447

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Stec I, Soder M, Holsboer F (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133:312–320

    CAS  PubMed  Google Scholar 

  • Reynolds RM, Bendall HE, Whorwood CB, Wood PJ, Walker BR, Phillips DI (1998) Reproducibility of the low dose dexamethasone suppression test: comparison between direct plasma and salivary cortisol assays. Clin Endocrinol (Oxf) 49:307–310

    Google Scholar 

  • Schlosser R, Wetzel H, Dorr H, Rossbach W, Hiemke C, Benkert O (2000) Effects of subchronic paroxetine administration on night-time endocrinological profiles in healthy male volunteers. Psychoneuroendocrinology 25:377–388

    Article  CAS  PubMed  Google Scholar 

  • Schule C, Baghai T, Schmidbauer S, Bidlingmaier M, Strasburger CJ, Laakmann G (2004) Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology 29:185–200

    Article  CAS  PubMed  Google Scholar 

  • Seifritz E, Baumann P, Muller MJ, Annen O, Amey M, Hemmeter U, Hatzinger M, Chardon F, Holsboer-Trachsler E (1996) Neuroendocrine effects of a 20-mg citalopram infusion in healthy males. A placebo-controlled evaluation of citalopram as 5-HT function probe. Neuropsychopharmacology 14:253–263

    Article  CAS  PubMed  Google Scholar 

  • Varis T, Kivisto KT, Neuvonen PJ (2000) The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone. Eur J Clin Pharmacol 56:57–60

    Article  CAS  PubMed  Google Scholar 

  • Veith RC, Lewis N, Langohr JI, Murburg MM, Ashleigh EA, Castillo S, Peskind ER, Pascualy M, Bissette G, Nemeroff CB, Raskind MA (1993) Effect of desipramine on cerebrospinal fluid concentrations of corticotropin-releasing factor in human subjects. Psychiatry Res 46:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yau JL, Noble J, Hibberd C, Seckl JR (2001) Short-term administration of fluoxetine and venlafaxine decreases corticosteroid receptor mRNA expression in the rat hippocampus. Neurosci Lett 306:161–164

    Article  CAS  PubMed  Google Scholar 

  • Yehuda R, Boisoneau D, Lowy MT, Giller EL Jr (1995) Dose–response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch Gen Psychiatry 52:583–593

    CAS  PubMed  Google Scholar 

  • Yehuda R, Halligan SL, Grossman R, Golier JA, Wong C (2002) The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder. Biol Psychiatry 52:393–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been funded by a UK Medical Research Council (MRC) Clinical Training Fellowship, and a NARSAD Young Investigator Award, both to C.M. Pariante.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pariante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pariante, C.M., Papadopoulos, A.S., Poon, L. et al. Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacology 177, 200–206 (2004). https://doi.org/10.1007/s00213-004-1925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1925-4

Keywords

Navigation