Skip to main content

Advertisement

Log in

Desipramine attenuates working memory impairments induced by partial loss of catecholamines in the rat medial prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The density of tyrosine hydroxylase-immunoreactive (TH-IR) axons in the prefrontal cortex of schizophrenic subjects may be reduced by as much as 50% in the deep cortical layers (Am J Psychiatry 156:1580–1589, 1999). Previously, we demonstrated that ~60% loss of TH-IR axons in the rat medial prefrontal cortex (mPFC) decreases local basal and stress-evoked extracellular dopamine (DA) concentrations, suggesting that moderate loss of DA axons in the mPFC is sufficient to alter the neurochemical activity of the remaining DA neurons (Neuroscience 93:497–505, 1999).

Objectives

To further assess the functional consequences of partial mPFC DA depletion, we examined the effects of 6-hydroxydopamine lesions of the rat mPFC on behavior in a T-maze delayed-response task. We also assessed whether chronic administration of the norepinephrine (NE) uptake inhibitor, desipramine (DMI), attenuates lesion-induced deficits in T-maze performance. Previous research indicates that inhibition of NE transport in the mPFC results in a concomitant increase in extracellular DA and NE.

Results

Moderate loss of mPFC DA and NE (~50 and 10% loss, respectively) was sufficient to impair delayed-response behavior, in part due to an increase in perseverative responding. Chronic DMI treatment (3 mg/kg delivered via osmotic pumps) impaired performance of control rats but attenuated the deficits in delayed-response behavior in rats previously sustaining loss of mPFC DA and NE (~75 and 35% loss, respectively).

Conclusion

These data suggest that moderate loss of DA and NE in the prefrontal cortex is sufficient to impair cognitive function, and these behavioral effects are attenuated by inhibition of the NE transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    PubMed  CAS  Google Scholar 

  • Angrist B, Rotrosen J, Gershon S (1980) Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology 67:31–38

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, Peselow E, Rubenstein M, Wolkin A, Rotrosen J (1985) Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharmacology 85:277–283

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1985) Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM (1999) Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 45:26–31

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AFT (1997) Catecholamine regulation of the prefrontal cortex. Psychopharmacology 11:151–162

    Article  CAS  Google Scholar 

  • Aultman JM, Moghaddam B (2001) Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology (Berl) 153:353–364

    Article  CAS  Google Scholar 

  • Avery RA, Franowicz JS, Studholme C, van Dyck CH, Arnsten AF (2000) The alpha-2A-adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology 23:240–249

    Article  PubMed  CAS  Google Scholar 

  • Bell LJ, Iversen LL, Uretsky NJ (1970) Time course of the effects of 6-hydroxydopamine on catecholamine-containing neurones in rat hypothalamus and striatum. Br J Pharmacol 40:790–799

    PubMed  CAS  Google Scholar 

  • Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF (1999) A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry 46:1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B, Hantsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969

    PubMed  CAS  Google Scholar 

  • Boyce PJ, Finlay JM (2005) Neonatal depletion of cortical dopamine: Effects on dopamine turnover and motor behavior in juvenile and adult rats. Dev Brain Res 156:167–175

    Article  CAS  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  PubMed  CAS  Google Scholar 

  • Bubser M, Schmidt WJ (1990) 6-Hydroxydopamine lesion of the rat prefrontal cortex increases locomotor activity, impairs acquisition of delayed alternation tasks, but does not affect uninterrupted tasks in the radial maze. Behav Brain Res 37:157–168

    Article  PubMed  CAS  Google Scholar 

  • Cai JX, Ma YY, Xu L, Hu XT (1993) Reserpine impairs spatial working memory performance in monkeys: reversal by the alpha 2-adrenergic agonist clonidine. Brain Res 614:191–196

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Tanda GL, Frau R, Di Chiara G (1990) Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem 55:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Carlson S, Tanila H, Rama P, Mecke E, Pertovaara A (1992) Effects of medetomidine an α-2 antagonist on spatial memory performance in adult and aged rats. Behav Neural Biol 58:113–119

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2004) Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29:1628–1636

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Middleton HC, Robbins TW, Sahakian BJ (1995) Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology 120:311–321

    Article  PubMed  CAS  Google Scholar 

  • Daniel DG, Berman KF, Weinberger DR (1989) The effect of apomorphine on regional cerebral blood flow in schizophrenia. J Neurophysiol Clin Neurosci 1:377–384

    CAS  Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11:1907–1917

    PubMed  CAS  Google Scholar 

  • Darlington RB (1990) Regression and linear models. McGraw-Hill, New York

    Google Scholar 

  • Dolan R, Fletcher P, Frith C, Friston K, Frackowiak R, Grasby P (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 378:180–182

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek B, Budde S, Cools A (1996) Prepulse inhibition and latent inhibition the role of dopamine in the medial prefrontal cortex. Neuroscience 75:535–542

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JM, Wesnes KA, Schwartz GE (2003) Reboxetine versus paroxetine versus placebo: effects on cognitive functioning in depressed patients. Int Clin Psychopharmacol 18:9–14

    Article  PubMed  Google Scholar 

  • Fletcher PC, Frith CD, Grasby PM, Friston KJ, Dolan RJ (1996) Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci 16:7055–7062

    PubMed  CAS  Google Scholar 

  • Franowicz JS, Arnsten AF (1998) The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136:8–14

    Article  PubMed  CAS  Google Scholar 

  • Franowicz JS, Phil M, Arnsten AF (1999) Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. Neuropsychopharmacology 21:611–621

    Article  PubMed  CAS  Google Scholar 

  • Geraud G, Arne-Bes MC, Guell A, Bes A (1987) Reversibility of hemodynamic hypofrontality in schizophrenia. J Cereb Blood Flow Metab 7:9–12

    PubMed  CAS  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20:1208–1215

    PubMed  CAS  Google Scholar 

  • Gresch PJ, Sved AF, Zigmond MJ, Finlay JM (1995) Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J Neurochem 65:111–116

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Weinberger DR (1992) Dopamine and schizophrenia—a cortically corrective perspective. Semin Neurosci 4:179–188

    Article  Google Scholar 

  • Jentsch J, Tran A, Le D, Youngren K, Roth R (1997) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical dependent cognition in the rat. Neuropsychopharmacology 17:92–99

    Article  PubMed  CAS  Google Scholar 

  • King D, Finlay JM (1995) Effects of selective dopamine depletion in medial prefrontal cortex on basal and evoked extracellular dopamine in neostriatum. Brain Res 685:117–128

    Article  PubMed  CAS  Google Scholar 

  • King D, Finlay JM (1997) Loss of dopamine terminals in the medial prefrontal cortex increased the ratio of DOPAC to DA in tissue of the nucleus accumbens shell: role of stress. Brain Res 767:192–200

    Article  PubMed  CAS  Google Scholar 

  • Kirk RE (1982) Experimental design: procedures for the behavioral science. Brooks/Cole, Pacific Grove, CA

    Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    CAS  Google Scholar 

  • Li BM, Mei ZT (1994) Delayed-response deficit induced by local injection of the alpha 2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol 62:134–139

    Article  PubMed  CAS  Google Scholar 

  • Mao ZM, Arnsten AF, Li BM (1999) Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry 46:1259–1265

    Article  PubMed  CAS  Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, New York

    Google Scholar 

  • Popper CW (2000) Pharmacologic alternatives to psychostimulants for the treatment of attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 9:605–646

    PubMed  CAS  Google Scholar 

  • Rammsayer TH, Hennig J, Haag A, Lange N (2001) Effects of noradrenergic activity on temporal information processing in humans. Q J Exp Psychol B 54:247–258

    Article  PubMed  CAS  Google Scholar 

  • Ravard S, Herve D, Thiebot MH, Soubrie P, Tassin JP (1990) Anticonflict-like effect of a prefrontal DA lesion in rats: permissive role of NA neurons. Behav Pharmacol 1:255–259

    Article  Google Scholar 

  • Robbins TW (1991) Cognitive deficits in schizophrenia and Parkinson’s disease: neural basis and the role of dopamine. In: The mesolimbic dopamine system: from motivation to action. Wiley, Chichester, UK, pp 497–528

    Google Scholar 

  • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14:2531–2544

    PubMed  CAS  Google Scholar 

  • Romanides AJ, Duffy P, Kalivas PW (1999) Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience 92:97–106

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T (1998) Attenuation of delay-period activity of monkey prefrontal neurons by an alpha2-adrenergic antagonist during an oculomotor delayed-response task. J Neurophysiol 80:2200–2205

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic RS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response. J Neurophysiol 71:515–528

    PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal–prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621

    PubMed  CAS  Google Scholar 

  • Sleipness EP, Bliss CA, Finlay JM (2001) Effects of desipramine on extracellular dopamine and norepinephrine in prefrontal cortex following partial depletion of local dopamine. 31st Annu Meet Soc Neurosci 27:479.16

    Google Scholar 

  • Stam C, deBruin J, Haelst A, Gugten J, Kalsbeek A (1989) Influence of the mesocortical dopaminergic system on activity, food hoarding, social-agonistic behavior, and spatial delayed alternation in male rats. Behav Neurosci 103:24–35

    Article  PubMed  CAS  Google Scholar 

  • Taghzouti K, Simon H, Herve D, Blanc G, Studler JM, Glowinski J, LeMoal M, Tassin JP (1988) Behavioural deficits induced by an electrolytic lesion of the rat ventral mesencephalic tegmentum are corrected by a superimposed lesion of the dorsal noradrenergic system. Brain Res 440:172–176

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Gash D (1988) Differential effects of hippocampal ablations on dispositional and representational memory in the rat. Behav Neurosci 102:635–642

    Article  PubMed  CAS  Google Scholar 

  • van Kammen D, Docherty J, Bunney W (1982) Prediction of early relapse after pimozide discontinuation by response to d-amphetamine during pimozide treatment. Biol Psychiatry 17:223–242

    PubMed  Google Scholar 

  • Venator DK, Lewis DA, Finlay JM (1999) Effects of partial dopamine loss in the medial prefrontal cortex on local baseline and stress-evoked extracellular dopamine concentrations. Neuroscience 93:497–505

    Article  PubMed  CAS  Google Scholar 

  • Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Novotney S (1998) Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem 71:274–280

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Matthew RG, Arnsten AFT (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by USPHS grants MH45156 and MH61616 and a Summer Research Grant from WWU Bureau for Faculty Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Finlay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clinton, S.M., Sucharski, I.L. & Finlay, J.M. Desipramine attenuates working memory impairments induced by partial loss of catecholamines in the rat medial prefrontal cortex. Psychopharmacology 183, 404–412 (2006). https://doi.org/10.1007/s00213-005-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0221-2

Keywords

Navigation