Skip to main content
Log in

Effects of endocannabinoid neurotransmission modulators on brain stimulation reward

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The endogenous cannabinoid system is responsive to the neurobiological actions of Δ9-tetrahydrocannabinol (THC) and other cannabinoid ligands. While numerous studies have focused on the behavioral and pharmacological effects of THC and cannabinoid agonists in experimental animals, most recent work focuses on compounds that modulate endocannabinoid neurotransmission. However, the relevant studies concerning the ability of endocannabinoid modulators to modify reward processes in experimental animals remain rather scarce.

Objectives

The present study examined the effects of drugs modulating endocannabinoid neurotransmission on brain reward function using the rate–frequency curve shift paradigm of intracranial self-stimulation (ICSS).

Methods

Animals were implanted with electrodes into the medial forebrain bundle (MFB). After brain stimulation reward thresholds stabilized, rats received intraperitoneal injections of the fatty acid amide hydrolase (FAAH) inhibitors phenylmethylsulfonyl fluoride (PMSF) (0, 15, 30, and 60 mg/kg) and URB-597 (0, 0.3, 1, and 3 mg/kg) and the selective anandamide reuptake inhibitor OMDM-2 (0, 3, 10, and 30 mg/kg).

Results

The highest dose of URB-597 and OMDM-2 significantly increased the threshold frequency required for MFB ICSS, while PMSF increased the threshold frequency in all doses tested. The cannabinoid 1 (CB1) receptor antagonist SR141716A reversed the actions of URB-597 and OMDM-2, but not PMSF, without affecting reward thresholds by itself.

Conclusions

These results indicate that under the present experimental conditions endocannabinoid modulators do not exhibit reinforcing properties, but rather have inhibitory influence on reward processes. The anhedonic effects of URB-597 and OMDM-2, but not PMSF, observed at the highest doses in this study are probably mediated through direct CB1 receptor stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  PubMed  CAS  Google Scholar 

  • Antoniou K, Galanopoulos A, Vlachou S, Kourouli T, Nahmias V, Thermos K, Panagis G, Daifoti Z, Marselos M, Papahatjis D, Spyraki C (2005) Behavioral pharmacological properties of a novel cannabinoid 1′,1′-dithiolane Δ8-THC analogue, AMG-3. Behav Pharmacol 16:499–510

    Article  PubMed  CAS  Google Scholar 

  • Arnold JC (2005) The role of endocannabinoid transmission in cocaine addiction. Pharmacol Biochem Behav 81(2):396–406

    Article  PubMed  CAS  Google Scholar 

  • Arnold JC, Hunt GE, McGregor IS (2001) Effects of the cannabinoid receptor agonist CP 55,940 and the cannabinoid receptor antagonist SR 141716 on intracranial self-stimulation in Lewis rats. Life Sci 70:97–108

    Article  PubMed  CAS  Google Scholar 

  • Arnone M, Maruani J, Chaperon F, Thiebot MH, Poncelet M, Soubrie P, Le Fur G (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology 132(1):104–106

    Article  PubMed  CAS  Google Scholar 

  • Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277(5329):1094–1097

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Ligresti A, Di Marzo V (2005) The endocannabinoid signaling system: biochemical aspects. Pharmacol Biochem Behav 81:224–238

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Campolongo P, Mangieri RA, Scattoni ML, Frau R, Trezza V, La Rana G et al (2006) Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology (in press). DOI 10.1038/sj.npp.1301061

  • Braida D, Pozzi M, Cavallini R, Sala M (2001) Conditioned place preference induced by the cannabinoid agonist CP 55,940: interaction with the opioid system. Neuroscience 104:923–926

    Article  PubMed  CAS  Google Scholar 

  • Campbell KA, Evans G, Gallistel CR (1985) A microcomputer-based method for physiologically interpretable measurement of the rewarding efficacy of brain stimulation. Physiol Behav 35(3):395–403

    Article  PubMed  CAS  Google Scholar 

  • Chaperon F, Thiébot MH (1998) Behavioral effects of cannabinoid agents in animals. Crit Rev Neurobiol 13:243–281

    Google Scholar 

  • Chaperon F, Soubrié P, Puech AJ, Thiébot MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology 135:324–332

    Article  PubMed  CAS  Google Scholar 

  • Cheer JF, Kendall DA, Marsden CA (2000) Cannabinoid receptors and reward in the rat: a conditioned place preference study. Psychopharmacology 151:25–30

    Article  PubMed  CAS  Google Scholar 

  • Comings DE, Muchleman D, Gade R, Johnson P, Verde R, Saucier G, MacMurray J (1997) Cannabinoid receptor gene (CNR1): association with i.v. drug use. Mol Psychiatry 2(2):161–168

    Article  PubMed  CAS  Google Scholar 

  • Compton DR, Martin BR (1997) The effect of the enzyme inhibitor phenylmethylsulfonyl fluoride on the pharmacological effect of anandamide in the mouse model of cannabimimetic activity. J Pharmacol Exp Ther 283(3):1138–1143

    PubMed  CAS  Google Scholar 

  • Corcoran ME, Amit Z (1974) Reluctance of rats to drink hashish suspensions: free choice and forced consumption and the effects of hypothalamic stimulation. Psychopharmacologia 352:129–147

    Article  Google Scholar 

  • Coulombe D, Miliaressis E (1987) Fitting intracranial self-stimulation data with growth models. Behav Neurosci 101(2):209–214

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384(6604):83–87

    Article  PubMed  CAS  Google Scholar 

  • de Lago E, Ligresti A, Ortar G, Morera E, Cabranes A, Pryce G, Bifulco M, Baker D, Fernandez-Ruiz J, Di Marzo V (2004) In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. Eur J Pharmacol 484(2–3):249–57

    PubMed  Google Scholar 

  • De Petrocellis L, Di Marzo V (2005) Lipids as regulators of the activity of transient receptor potential type V1 (TRPV1) channels. Life Sci 77(14):1651–1666

    Article  PubMed  CAS  Google Scholar 

  • De Vries TJ, Schofeelmeer AN (2005) Cannabinoid CB1 receptors control conditioned drug seeking. Trends Pharmacol Sci 26(8):420–426

    Article  PubMed  CAS  Google Scholar 

  • Del Arco I, Navarro M, Bilbao A, Ferrer B, Piomelli D, Rodriguez de Fonseca F (2002) Attenuation of spontaneous opiate withdrawal in mice by the anandamide transport inhibitor AM404. Eur J Pharmacol 454(1):103–104

    Article  PubMed  Google Scholar 

  • Deutsch DG, Chin SA (1993) Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 46(5):791–796

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Fontana A, Cadas H, Schinelli S, Cimino G, Schwartz JC, Piomelli D (1994) Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372(6507):686–691

    Article  PubMed  Google Scholar 

  • Di Marzo V, Bifulco M, De Petrocellis L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3(9):771–784

    Article  PubMed  CAS  Google Scholar 

  • Edmonds DE, Gallistel CR (1974) Parametric analysis of brain stimulation reward in the rat: III. Effect of performance variables on the reward summation function. J Comp Physiol Psychol 87(5):876–883

    Article  PubMed  CAS  Google Scholar 

  • Elsmore TF, Fletcher GV (1972) Δ9-tetrahydrocannabinol: aversive effects in rats at high doses. Science 171:911–912

    Article  Google Scholar 

  • Fattore L, Cossu G, Martellotta CM, Fratta W (2001) Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212–2 in rats. Psychopharmacology 156:410–416

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Deiana S, Spano SM, Cossu G, Fadda P, Scherma M, Fratta W (2005) Endocannabinoid system and opioid addiction: behavioural aspects. Pharmacol Biochem Behav 81(2):343–59

    Article  PubMed  CAS  Google Scholar 

  • Fegley D, Kathuria S, Mercier R, Li C, Goutopoulos A, Makriyannis A, Piomelli D (2004) Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proc Natl Acad Sci USA 101(23):8756–8761

    Article  PubMed  CAS  Google Scholar 

  • Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther 313(1):352–358

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Holt S, Nilsson O, Jonsson KO, Tiger G, Jacobsson SOP (2005) The endocannabinoid signaling system: pharmacological and therapeutic aspects. Pharmacol Biochem Behav 81:248–262

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066

    PubMed  CAS  Google Scholar 

  • Fujiwara M, Egashira N (2004) New perspectives in the studies on endocannabinoids and cannabis: abnormal behaviours associate with CB1 cannabinoid receptor and development of therapeutic application. J Pharmacol Sci 96(4):362–366

    Article  PubMed  CAS  Google Scholar 

  • Gallate JE, Sharov T, Mallet PE, McGregor IS (1999) Increased motivation for beer in rats following administration of a cannabinoid CB1 receptor agonist. Eur J Pharmacol 370(3):233–240

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL, Paredes W, Smith D, Donner A, Milling C, Cohen D, Morrison D (1988) Facilitation of brain stimulation reward by Δ9-tetrahydrocannabinol. Psychopharmacology 96:142–144

    Article  PubMed  CAS  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signalling in dorsal striatum. Nat Neurosci 2:358–363

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campologno P, Solinas M, Cassano T, Morgese MG, Debonnel G et al (2005) Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 102(51):18620–18625

    Article  PubMed  CAS  Google Scholar 

  • Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agro A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22(16):6900–6907

    PubMed  CAS  Google Scholar 

  • Hansson AC, Bermudez-Silva FJ, Malinen H, Hyytia P, Sanchez-Vera I, Rimondini R, Rodriguez de Fonseca F, Kunos G, Sommer WH, Heilig M (2006) Genetic impairment of frontocortical endocannabinoid degradation and high alcohol preference. Neuropsychopharmacology (in press). DOI 10.1038/sj.npp.1301034

  • Harris RT, Waters W, McLendon D (1974) Evaluation of reinforcing capability of DELTA 9-THC in rhesus monkeys. Psychopharmacologia 37:23–39

    Article  PubMed  CAS  Google Scholar 

  • Hillard CJ, Wilkinson DM, Edgemond WS, Campbell WB (1995) Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochim Biophys Acta 1257(3):249–256

    PubMed  Google Scholar 

  • Holt S, Comelli F, Costa B, Fowler CJ (2005) Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Br J Pharmacol 146(3):467–476

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas G, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202

    Article  PubMed  CAS  Google Scholar 

  • Huestis MA, Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Frank RA (2001) Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry 58(4):322–328

    Article  PubMed  CAS  Google Scholar 

  • Hungund BL, Basavarajappa BS (2000) Are anandamide and cannabinoid receptors involved in ethanol tolerance? A review of the evidence. Alcohol Alcohol 35(2):126–33

    PubMed  CAS  Google Scholar 

  • Hunt T, Amit Z (1987) Conditioned taste aversion induced by self-administered drugs: paradox revisited. Neurosci Biobehav Rev 11:107–130

    Article  PubMed  CAS  Google Scholar 

  • Inui A (2001) Emesis, appetite and endocannabinoids. Gastroenterology 123(2):655–656

    Article  Google Scholar 

  • Iversen L (2003) Cannabis and the brain. Brain 126:1252–1270

    Article  PubMed  Google Scholar 

  • Jarbe TU, Lamb RJ, Lin S, Makriyannis A (2001) (R)-methanandamide and Delta 9-THC as discriminative stimuli in rats: tests with the cannabinoid antagonist SR-141716 and the endogenous ligand anandamide. Psychopharmacology (Berl) 156(4):369–380

    Article  CAS  Google Scholar 

  • Justinova Z, Tanda G, Redhi GH, Goldberg SR (2003) Self-administration of Δ9-tetrahydrocannabinol (THC) by drug naïve squirrel monkeys. Psychopharmacology 169:135–140

    Article  PubMed  CAS  Google Scholar 

  • Justinova Z, Solinas M, Tanda G, Redhi GH, Goldberg SR (2005) The endogenous cannabinoid anandamide and its synthetic analog R(+)-methanandamide are intravenously self-administered by squirrel monkeys. J Neurosci 25(23):5645–5650

    Article  PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9(1):76–81

    Article  PubMed  CAS  Google Scholar 

  • Kirkham TC (2005) Endocannabinoids in the regulation of appetite and body weight. Behav Pharmacol 16(5–6):297–313

    Article  PubMed  CAS  Google Scholar 

  • Lallemand F, Soubrie PH, De Witte PH (2001) Effects of CB1 cannabinoid receptor blockade on ethanol preference after chronic ethanol administration. Alcohol Clin Exp Res 25(9):1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Lambert DM, Fowler CJ (2005) The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48(16):5059–5087

    Article  PubMed  CAS  Google Scholar 

  • Lastres-Becker I, Hanses HH, Berrendero F, De Miguel R, Perez-Rosado A, Manzanares J, Ramos JA, Fernandez-Ruiz J (2002) Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 44(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 15;283(5400):401–404

    Article  Google Scholar 

  • Leite JL, Carlini EA (1974) Failure to obtain “cannabis directed behavior” and abstinence syndrome in rats chronically treated with cannabis sativa extracts. Psychopharmacologia 36:133–145

    Article  PubMed  CAS  Google Scholar 

  • Lepore M, Vorel SR, Lowinson J, Gardner EL (1995) Conditioned place preference induced by Δ9-tetrahydrocannabinol: comparison with cocaine, morphine and food reward. Life Sci 56:2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Lepore M, Liu X, Savage V, Matalon D, Gardner EL (1996) Genetic differences in Δ9-tetrahydrocannabinol-induced facilitation of brain stimulation reward as measured by a rate–frequency curve-shift electrical brain stimulation paradigm in three different rat strains. Life Sci 58:365–372

    Article  Google Scholar 

  • Lichtman AH, Leung D, Shelton CC, Saghatelian A, Hardouin C, Boger DL, Cravatt BF (2004) Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 311(2):441–448

    Article  PubMed  CAS  Google Scholar 

  • Liebman JM (1983) Discriminating between reward and performance: a critical review of intracranial self-stimulation methodology. Neurosci Biobehav Rev 7:45–72

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist T (2005) Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol Biochem Behav 81:319–330

    Article  PubMed  CAS  Google Scholar 

  • Mackie K (2005) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    Article  CAS  Google Scholar 

  • Maejima T, Ohno-Shosaku T, Kano M (2001) Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci Res 40(3):205–210

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Rodriguez de Fonseca F (2002) Cannabinoid addiction: behavioral models and neural correlates. J Neurosci 22(9):3326–3331

    PubMed  CAS  Google Scholar 

  • Maldonado-Irizarry CS, Stellar JR, Kelley AE (1994) Effects of cocaine and GBR-12909 on brain stimulation reward. Pharmacol Biochem Behav 48:915–920

    Article  PubMed  CAS  Google Scholar 

  • Mallet PE, Beninger RJ (1998) Δ9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance. Life Sci 62:2431–2439

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Nicholson KL, Martin BR, Balster RL (1994) Failure of Δ9-tetrahydrocannabinol and CP 55,940 to maintain intravenous self-administration under a fixed-interval schedule in rhesus monkeys. Behav Pharmacol 5:210–225

    Article  Google Scholar 

  • Markou A, Koob GF (1992) Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol Behav 51:111–119

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Koob GF (1993) Intracranial self-stimulation thresholds are a measure of reward. In: Saghal A (ed) Behavioral neuroscience: a practical approach, vol. II. IRL, Oxford, pp 93–115

    Google Scholar 

  • Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannish A, Azad SC, Cscio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di marzo V, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302(5642):84–88

    Article  PubMed  CAS  Google Scholar 

  • Martellotta MC, Cossu G, Fattore L, Gessa GL, and Fratta W (1998) Self-administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naïve mice. Neuroscience 85:327–330

    Article  PubMed  CAS  Google Scholar 

  • Martin BR (2002) Identification of the endogenous cannabinoid system through integrative pharmacological approaches. J Pharmacol Exp Ther 301(3):790–796

    Article  PubMed  CAS  Google Scholar 

  • Mascia MS, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A, Fratta W (1999) Lack of morphine-induced dopamine release in the nucleus accumbens of cannabinoid CB(1) receptor knockout mice. Eur J Pharmacol 383(3):R1–R2

    Article  PubMed  CAS  Google Scholar 

  • McGregor IS, Issakidis CN, Prior G (1996) Aversive effects of the synthetic cannabinoid CP 55,940 in rats. Pharmacol Biochem Behav 53:657–664

    Article  PubMed  CAS  Google Scholar 

  • Miliaressis E, Rompré PP, Laviolette P, Philippe L, Coulombe D (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37:85–91

    Article  PubMed  CAS  Google Scholar 

  • Moore SA, Nomikos GG, Dickason-Chesterfield AK, Schober DA, Schaus JM, Ying BP, Xu YC, Phebus L, Simmons RM, Li D, Iyengar S, Felder CC (2005) Identification of a high-affinity binding site involved in the transport of endocannabinoids. Proc Natl Acad Sci USA 102(49):17852–17857

    Article  PubMed  CAS  Google Scholar 

  • Ortar G, Ligresti A, De Petrocellis L, Morera E, Di Marzo V (2003) Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochem Pharmacol 65(9):1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Gutiérrez S (2005) Therapeutic perspectives of inhibitors of endocannabinoid degradation. Curr Drug Targets CNS Neurol Disord 4(6):697–707

    Article  PubMed  Google Scholar 

  • Ortiz S, Oliva JM, Pérez-Rial S, Palomo T, Manzanares J (2004) Chronic ethanol consumption regulates cannabinoid CB1 receptor gene expression in selected regions of rat brain. Alcohol Alcohol 39:88–92

    PubMed  CAS  Google Scholar 

  • Parker LA, Gillies T (1995) THC-induced place and taste aversions in Lewis and Sprague-Dawley rats. Behav Neurosci 109:71–78

    Article  PubMed  CAS  Google Scholar 

  • Parolaro D, Vigano D, Rubino T (2005) Endocannabinoids and drug dependence. Curr Drug Targets CNS Neurol Disord 4(6):643–655

    Article  PubMed  CAS  Google Scholar 

  • Patricelli MP, Lovato MA, Cravatt BF (1999) Chemical and mutagenic investigations of fatty acid amid hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties. Biochemistry 38(31):9804–9812

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Pazos MR, Núñez E, Benito C, Tolón RM, Romero J (2005) Functional neuroanatomy of the endocannabinoid system. Pharmacol Biochem Behav 81:239–247

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2005) The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 7(3):E625–E654

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4(11):873–884

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D (2004) The endogenous cannabinoid system and the treatment of marijuana dependence. Neuropharmacology 47(Suppl 1):359–367

    Article  PubMed  CAS  Google Scholar 

  • Ranaldi R, Beninger RJ (1994) The effects of systemic and intracerebral injections of D1 and D2 agonists on brain stimulation reward. Brain Res 651:283–292

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congry C, Martinez S, Maruani J, Néliat G, Caput D et al (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    Article  PubMed  CAS  Google Scholar 

  • Robinson L, Hinder L, Pertwee RG, Riedel G (2003) Effects of Δ9-THC and WIN 55,212–2 on place preference in the water maze in rats. Psychopharmacology 166:40–50

    PubMed  CAS  Google Scholar 

  • Rodriguez de Fonseca F, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M (2005) The endocannabinoid system: physiology and pharmacology. Alcohol Alcohol 40(1):2–14

    PubMed  CAS  Google Scholar 

  • Romero J, Lastres-Becker I, De Miguel R, Berrendero F, Ramos, JA, Fernández-Ruiz J (2002) The endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 95:137–152

    Article  PubMed  CAS  Google Scholar 

  • Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140(5):790–801

    Article  PubMed  CAS  Google Scholar 

  • Sañudo-Pena MC, Tsou K, Delay ER, Hohman AG, Force M, Walker M (1997) Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci Lett 223:125–128

    Article  PubMed  Google Scholar 

  • Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22(11):565–572

    Article  PubMed  CAS  Google Scholar 

  • Solinas M, Panlilio LV, Tanda G, Makriyannis A, Matthews SA, Goldberg SR (2005) Cannabinoid agonists but not inhibitors of endogenous cannabinoid transport or metabolism enhance the reinforcing efficacy of heroin in rats. Neuropsychopharmacology 30(11):2046–2057

    Article  PubMed  CAS  Google Scholar 

  • Stark P, Dews PB (1980) Cannabinoids: behavioral effects. J Pharmacol Exp Ther 214:124–130

    PubMed  CAS  Google Scholar 

  • Takahashi RN, Singer G (1979) Self-administration of delta-9-tetrahydrocannabinol by rats. Pharmacol Biochem Behav 11:737–740

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Goldberg SR (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms—a review of recent preclinical data. Psychopharmacology 169:115–134

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Munzar P, Goldberg SR (2000) Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci 3:1073–1074

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Maldonado R (2000) A behavioral model to reveal place preference to Δ9-tetrahydrocannabinol in mice. Psychopharmacology 147:436–438

    Article  PubMed  CAS  Google Scholar 

  • Van der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem (10):1827–1834

    Article  CAS  Google Scholar 

  • Van Ree JM, Slangen J, de Wied D (1978) Intravenous self-administration of drugs in rats. J Pharmacol Exp Ther 20:547–557

    Google Scholar 

  • Vela G, Ruiz-Gayo M, Fuentes JA (1995) Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. Neuropharmacology 34(6):665–668

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Kennett GA (2005) Cannabinoids and the regulation of ingestive behaviour. Curr Drug Targets 6(2):215–223

    PubMed  CAS  Google Scholar 

  • Vigano D, Valenti M, Cascio MG, Di Marzo V, Parolaro D, Rubino T (2004) Changes in endocannabinoid levels in a rat model of behavioural sensitization to morphine. Eur J Neurosci 20(7):1849–1857

    Article  PubMed  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342

    Article  PubMed  CAS  Google Scholar 

  • Vlachou S, Nomikos GG, Panagis G (2003) WIN 55,212–2 decreases the reinforcing actions of cocaine through CB1 cannabinoid receptor stimulation. Behav Brain Res 141:215–222

    Article  PubMed  CAS  Google Scholar 

  • Vlachou S, Nomikos GG, Panagis G (2005) CB1 cannabinoid receptor agonists increase intracranial self-stimulation thresholds in the rat. Psychopharmacology 179:498–508

    Article  PubMed  CAS  Google Scholar 

  • Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ (2003) The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 307:129–137

    Article  PubMed  CAS  Google Scholar 

  • Wiley JL, LaVecchia KL, Karp NE, Kulasegram S, Mahadevan A, Razdan RK, Martin BR (2004) A comparison of the discriminative stimulus effects of delta(9)-tetrahydrocannabinol and O–1812, a potent and metabolically stable anandamide analog, in rats. Exp Clin Psychopharmacol 12(3):173–179

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410(6828):588–592

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hagiwara Y, Tanaka H, Sugiura T, Waku K, Shoyama H, Watanaba S, Yamamoto T (2001) Endogenous cannabinoid, 2-arachidonoylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res 909(1–2):121–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Research Committee (KA 2303) and the Department of Psychology of the University of Crete. Styliani Vlachou was supported by a scholarship from PROPONTIS Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Panagis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachou, S., Nomikos, G.G. & Panagis, G. Effects of endocannabinoid neurotransmission modulators on brain stimulation reward. Psychopharmacology 188, 293–305 (2006). https://doi.org/10.1007/s00213-006-0506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0506-0

Keywords

Navigation