Skip to main content

Advertisement

Log in

Linking nucleus accumbens dopamine and blood oxygenation

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Animal research suggests that anticipation of reward can elicit dopamine release in the nucleus accumbens (NAcc). Human functional magnetic resonance imaging (FMRI) research further suggests that reward anticipation can increase local blood oxygen level dependent (BOLD) signal in the NAcc. However, the physiological relationship between dopamine release and BOLD signal increases in the NAcc has not yet been established.

Objectives

This review considers pharmacological MRI (phMRI) evidence for a directional relationship between NAcc dopamine release and BOLD signal, as well as implications for human psychopathological symptoms.

Results

Accumulating phMRI evidence supports a simple model in which NAcc dopamine release activates postsynaptic D1 receptors, which changes postsynaptic membrane potential, eventually increasing local BOLD signal. This continuing influence can change on a second-to-second basis.

Conclusions

Dopamine release in the NAcc appears to increase local BOLD signal via agonism of postsynaptic D1 receptors. Such a physiological mechanism implies that FMRI may be used to track symptoms related to NAcc dopaminergic dysregulation in psychiatric disorders including schizophrenia and attention deficit/hyperactivity disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Measuring NAcc activity. Because dopamine release fluctuates rapidly in the NAcc (see Fig. 1), both spatial and temporal resolutions present critical considerations for researchers. Presently available methods differ in spatial and temporal resolution (current estimates are listed below for each). However, future innovations may well increase the resolution of any of these methods. Because they are invasive, microdialysis and cyclic voltammetry are primarily used in rodents, whereas PET and FMRI are less invasive and so commonly used in humans. a Microdialysis (0.3 mm, 120 s): A probe containing concentric tubes is positioned in the brain region of interest. Synthetic extracellular fluid is passed from the outer tube to the inner tube. Extracellular molecules (e.g., dopamine) are also sucked into the inner tube, which can then be analyzed for chemical content with high performance liquid or gas chromatography. b Cyclic voltammetry (0.01 mm, 0.100 s): A probe containing two adjacent electrical wires is positioned in the brain region of interest. A variable current is passed from one wire to the other, and electron flow through intermediary material is measured. Certain molecules increase current flow at specific voltages. Given the absence of other similarly reactive molecules (e.g., norepinephrine), and controlling for background current, the presence of dopamine can be inferred. c Radioligand positron emission tomography (8 mm, 3,600 s): A compound containing radioactively tagged molecules that mimic dopamine is injected into the subject. The tagged molecules travel to the brain and attach to dopamine receptors. The tags decay, emitting two positrons in opposite directions, and a camera detects the emissions and computes their point of origin. As the tags decay, subjects receive an experimental treatment that releases dopamine (e.g., receive an amphetamine injection) or a control treatment that does not (e.g., receive a placebo injection). Once released, dopamine displaces tagged molecules from receptors, and a difference in positron emission in that specific locale between experimental and control conditions can later be computed. d Functional magnetic resonance imaging: (4 mm, 1 s): A large magnet aligns protons in subjects’ brains. A smaller coil then emits magnetic pulses that flip the protons’ orientation and subsequently assesses the speed and spin with which protons return to their original orientation. Subjects engage in a task that elicits more or less synaptic activity. In brain regions with increased synaptic activity, oxygen consumption increases, followed by a disproportionate increase in local venous oxygen with an approximate lag of 4–6 s. “Ballooning” of these veins with oxygenated blood creates a small venous pocket of demagnetization, which has been called “blood oxygen level dependent” (BOLD) signal. Changes in regional BOLD signal can be compared across experimental versus control task conditions. Whereas microdialysis and radioligand PET have greater chemical specificity for detecting dopamine, cyclic voltammetry and FMRI have greater temporal resolution for detecting rapid changes in NAcc activity. As each method has different strengths, each can make unique contributions to researchers’ understanding of changes in NAcc dopamine.

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  CAS  Google Scholar 

  • Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8:360–369

    Article  PubMed  CAS  Google Scholar 

  • Astrup J, Heuser D, Lassen NA, Nilsson B, Norberg K, Siesjo BK (1978) Evidence against H+ and K+ as main factors for the control of cerebral blood flow: a microelectrode study. Ciba Foundation Symposium, pp 313–337

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  • Chen YI, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Keltner JR, Beal MF, Rosen BR, Jenkins BG (1997) Detection of dopaminergic neurotransmitter activity using phMRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38:389–398

    PubMed  CAS  Google Scholar 

  • Chen YI, Brownell AL, Galpern W, Isacson O, Bogdanov M, Beal MF, Livni E, Rosen BR, Jenkins BG (1999) Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. NeuroReport 10:2881–2886

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Choi JK, Anderson SL, Rosen BR, Jenkins BG (2005) Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacology 180:704–715

    Google Scholar 

  • Choi JK, Chen YI, Hamel E, Jenkins BG (2006) Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. NeuroImage 30:700–712

    Article  PubMed  Google Scholar 

  • Chuhma N, Zhang H, Masson J, Zhuang X, Sulzer D, Hen R, Rayport S (2004) Dopamine neurons mediate a fast excitatory signal via their glutamatergic synapses. J Neurosci 24:972–981

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Robbins TW (2004) Chemistry of the adaptive mind. Philos Trans R Soc Lond 362:2871–2888

    Article  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  • Cragg SJ, Rice ME (2004) DAncing past the DAT at a DA synapse. Trends Neurosci 27:270–277

    Article  PubMed  CAS  Google Scholar 

  • Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM (2005) Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48:236–245

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, McCulloch J, Sharkey J (1985) Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists. Br J Pharmacol 85:403–410

    PubMed  CAS  Google Scholar 

  • Falck B, Hillarp NA (1959) On the cellular localization of catechol amines in the brain. Acta Anat 38:277–279

    Article  PubMed  CAS  Google Scholar 

  • Febo M, Segarra AC, Tenney JR, Brevard ME, Duong TQ, Ferris CF (2004) Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J Neurosci Methods 139:167–176

    Article  PubMed  CAS  Google Scholar 

  • Ferris CF, Snowdon CT, King JA, Sullivan JMJ, Ziegler Te, Olson DP, Schultz-Darken NJ, Tannenbaum PL, Ludwig R, Wu Z, Einspanier A, Vaughan JT, Duong TQ (2004) Activation of neural pathways associated with sexual arousal in non-human primates. J Magn Reson Imaging 19:168–174

    Article  PubMed  Google Scholar 

  • Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14:6084–6093

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier Science, London, UK, pp 371–468

    Google Scholar 

  • Gonon F (1997) Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17:5972–5978

    PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Jenkins BG, Sanchez-Pernaute R, Brownell AL, Chen YC, Isacson O (2004) Mapping dopamine function in primates using pharmacological magnetic resonance imaging. J Neurosci 24:9553–9560

    Article  PubMed  CAS  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A (2006a) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical but not atypical neuroleptics. Psychopharmacology 187:222–228

    Article  PubMed  CAS  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, Wrase J, Heinz A (2006b) Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage 29:409–416

    Article  PubMed  Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417

    Article  PubMed  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21:RC159

    PubMed  CAS  Google Scholar 

  • Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related FMRI. NeuroImage 18:263–272

    Article  PubMed  Google Scholar 

  • Knutson B, Bjork JM, Fong GW, Hommer D, Mattay VS, Weinberger DR (2004) Amphetamine modulates human incentive processing. Neuron 43:261–269

    Article  PubMed  CAS  Google Scholar 

  • Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, Bloom AS, Li S-J (2005) Neural responses to acute cocaine administration in the human brain detected by fMRI. NeuroImage 28:904–914

    Article  PubMed  Google Scholar 

  • Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 25:5013–5023

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, Gunn R, Young SN, Benkelfat C (2004) Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: A PET/[11C]Raclopride study in healthy men. Neuropsychopharmacology 29:427–432

    PubMed  CAS  Google Scholar 

  • Lindauer U, Megow D, Matsuda H, Dirnagl U (1999) Nitric oxide: a modulator, but not a mediator of neurovascular coupling in rat somatosensory cortex. Am J Physiol 277:H799–H811

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  PubMed  CAS  Google Scholar 

  • Luo F, Wu G, Li Z, Li S-J (2003) Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain. Magn Reson Med 49:264–270

    Article  PubMed  Google Scholar 

  • Mandeville JB, Jenkins BG, Kosofsky BE, Moskowitz MA, Rosen BR, Marota JJ (2001) Regional sensitivity of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 45:443–447

    Article  PubMed  CAS  Google Scholar 

  • Marota JJ, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE (2000) Cocaine activation discriminates dopaminergic projections by temporal response: an FMRI study in rat. NeuroImage 11:13–23

    Article  PubMed  CAS  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  PubMed  CAS  Google Scholar 

  • Milner PM (1989) The discovery of self-stimulation and other stories. Neurosci Biobehav Rev 13:61–67

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, McClure SM, Baldwin PR, Phillips PEM, Budygin EA, Stuber GD, Kilpatrick MR, Wightman RM (2004) Dynamic gain control of dopamine delivery in freely moving animals. J Neurosci 24:1754–1759

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TV, Brownell AL, Chen YC, Livni E, Coyle JT, Rosen BR, Cavagna F, Jenkins BG (2000) Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 36:57–65

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776

    Article  PubMed  CAS  Google Scholar 

  • Olds ME, Fobes JL (1981) The central basis of motivation: intracranial self-stimulation studies. Annu Rev Psychol 32:523–574

    Article  PubMed  CAS  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Neto P, Lou HC, Cumming P, Pryds O, Karrebaek H, Lunding J, Gjedde A (2005) Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. NeuroImage 25:868–876

    Article  PubMed  Google Scholar 

  • Scheres A, Milham MP, Knutson B, Castellanos FX (2006) Ventral striatal hyporesponsiveness during reward anticipation in attention deficit/hyperactivity disorder. Biol Psychiatry (in press). DOI 10.1016/j.biopsych.2006.04.042

  • Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D (2001) Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 21:5916–5924

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Schwarz A, Gozzi A, Reese T, Bertain S, Crestan V, Hagan J, Heidbreder C, Bifone A (2004a) Selective dopamine D(3) receptor antagonist SB-277011-A potentiates phMRI response to acute amphetamine challenge in the rat brain. Synapse 54:1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarz AJ, Zocchi A, Reese T, Gozzi M, Varnier G, Curcuruto O, Sartori I, Girlanda E, Biscaro B, Crestan V, Bertani S, Heidbreder C, Bifone A (2004b) Concurrent pharmacological MRI and in situ microdialysis of cocaine reveal a complex relationship between the central hemodynamic response and local dopamine concentration. NeuroImage 23:296–304

    Article  PubMed  CAS  Google Scholar 

  • Shizgal P (1997) Neural basis of utility estimation. Curr Opin Neurobiol 7:198–208

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Steward CA, Marsden CD, Prior MJW, Morris PG, Shah YB (2005) Methodological considerations in rat brain BOLD contrast pharmacological MRI. Psychopharmacology 180:687–704

    Article  PubMed  CAS  Google Scholar 

  • Vollm BA, de Araujo IE, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, Jezzard P, Heal RJ, Matthews PM (2004) Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology 29:1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Watson D, Tellegen A (1985) Toward a consensual structure of mood. Psychol Bull 98:219–235

    Article  PubMed  CAS  Google Scholar 

  • West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA (2003) Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann NY Acad Sci 1003:53–74

    Article  PubMed  CAS  Google Scholar 

  • Westerink BHC (1995) Brain microdialysis and its application for the study of animal behaviour. Behav Brain Res 70:103–124

    Article  PubMed  CAS  Google Scholar 

  • Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with ‘reward’. J Neurochem 82:721–735

    Article  PubMed  CAS  Google Scholar 

  • Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, May LJ (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–523

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain, dopamine, and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank G. Elliott Wimmer, Peter Shizgal, and three anonymous reviewers for helpful comments on prior drafts of the manuscript. During manuscript preparation, BK was supported by NIDA grant DA020615-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Knutson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knutson, B., Gibbs, S.E.B. Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology 191, 813–822 (2007). https://doi.org/10.1007/s00213-006-0686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0686-7

Keywords

Navigation