Skip to main content

Advertisement

Log in

Changes in brain 11C–nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Marked reduction in the cortical nicotinic acetylcholine receptors is observed in the brain of patients suffering from Alzheimer’s disease (AD). Although cholinesterase inhibitors are used for symptomatic treatment of mild to moderate AD patients, numerous long-term treatment studies indicate that they might stabilize or halt the progression of the disease by restoring the central cholinergic neurotransmission. Thus, we used positron emission tomography (PET) technique as a sensitive approach to assess longitudinal changes in the nicotine binding sites in the brains of patients with AD.

Objective

To evaluate changes in brain nicotinic binding sites in relation to inhibition level of cholinesterases in cerebrospinal fluid (CSF) and plasma and changes in cognitive performance of the patients in different neuropsychological tests after rivastigmine treatment.

Materials and methods

Ten mild AD patients received rivastigmine for 12 months. A dual-tracer PET model with administration of 15O–water and (S)(–)11C–nicotine was used to assess 11C–nicotine binding sites in the brain at baseline and after 3 and 12 months of the treatment. Cholinesterase activities in CSF and plasma were assessed colorimetrically.

Results

The 11C–nicotine binding sites were significantly increased 12–19% in several cortical brain regions after 3 months compared with baseline, while the increase was not significant after 12 months of the treatment. After 3 months treatment, low enzyme inhibition in CSF and plasma was correlated with higher cortical 11C–nicotine binding. The 11C–nicotine binding positively correlated with attentional task at the 12-month follow-up.

Conclusion

Changes in the 11C–nicotine binding during rivastigmine treatment might represent remodeling of the cholinergic and related neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alhainen K, Helkala EL, Riekkinen P (1993) Psychometric discrimination of tetrahydroaminoacridine responders in Alzheimer patients. Dementia 4:54–58

    Article  PubMed  CAS  Google Scholar 

  • Almkvist O, Jelic V, Amberla K, Hellstrom-Lindahl E, Meurling L, Nordberg A (2001) Responder characteristics to a single oral dose of cholinesterase inhibitor: a double-blind placebo-controlled study with tacrine in Alzheimer patients. Dement Geriatr Cogn Disord 12:22–32

    Article  PubMed  CAS  Google Scholar 

  • Almkvist O, Darreh-Shori T, Stefanova E, Spiegel R, Nordberg A (2004) Preserved cognitive function after 12 months of treatment with rivastigmine in mild Alzheimer’s disease in comparison with untreated AD and MCI patients. Eur J Neurol 11:253–261

    Article  PubMed  CAS  Google Scholar 

  • Bäckman L, Forsell Y (1994) Episodic memory functioning in a community-based sample of old adults with major depression: utilization of cognitive support. J Abnorm Psychology 103:361–370

    Article  Google Scholar 

  • Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk GL (2000) Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 99:17–23

    Article  PubMed  CAS  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47

    Article  PubMed  CAS  Google Scholar 

  • Cahn-Weiner DA, Sullivan EV, Shear PK, Fama R, Lim KO, Yesavage JA, Tinklenberg JR, Pfefferbaum A (1999) Brain structural and cognitive correlates of clock drawing performance in Alzheimer’s disease. J Int Neuropsychol Soc 5:502–509

    Article  PubMed  CAS  Google Scholar 

  • Darreh-Shori T, Almkvist O, Guan ZZ, Garlind A, Strandberg B, Svensson AL, Soreq H, Hellstrom-Lindahl E, Nordberg A (2002) Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 59:563–572

    PubMed  CAS  Google Scholar 

  • Darreh-Shori T, Brimijoin S, Kadir A, Almkvist O, Nordberg A (2006a) Differential CSF butyrylcholinesterase levels in Alzheimer’s disease patients with the ApoE epsilon4 allele, in relation to cognitive function and cerebral glucose metabolism. Neurobiol Dis 24:326–333

    Article  PubMed  CAS  Google Scholar 

  • Darreh-Shori T, Kadir A, Almkvist O, Grut M, Wall A, Blomquist G, Eriksson B, Langstrom B, Nordberg A (2006b) Inhibition of acetylcholinesterase in CSF versus brain assessed by (11)C-PMP PET in AD patients treated with galantamine. Neurobiol Aging DOI 10.1016/j.neurobiolaging.2006.09.020

  • Darreh-Shori T, Meurling L, Pettersson T, Hugosson K, Hellstrom-Lindahl E, Andreasen N, Minthon L, Nordberg A (2006c) Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer’s disease following chronic donepezil treatment. J Neural Transm 113:1791–1801

    Article  PubMed  CAS  Google Scholar 

  • Ding YS, Fowler JS, Logan J, Wang GJ, Telang F, Garza V, Biegon A, Pareto D, Rooney W, Shea C, Alexoff D, Volkow ND, Vocci F (2004) 6-[18F]Fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 53:184–189

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Gallezot JD, Bottlaender M, Gregoire MC, Roumenov D, Deverre JR, Coulon C, Ottaviani M, Dolle F, Syrota A, Valette H (2005) In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET. J Nucl Med 46:240–247

    PubMed  CAS  Google Scholar 

  • Giacobini E, Zhu XD, Williams E, Sherman KA (1996) The effect of the selective reversible acetylcholinesterase inhibitor E2020 on extracellular acetylcholine and biogenic amine levels in rat cortex. Neuropharmacology 35:205–211

    Article  PubMed  CAS  Google Scholar 

  • Giacobini E, Spiegel R, Enz A, Veroff AE, Cutler NR (2002) Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm 109:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Haman M, Wyler R, Higgins GA (2003) Reversal of a vigilance decrement in the aged rat by subtype-selective nicotinic ligands. Neuropsychopharmacology 28:880–887

    PubMed  CAS  Google Scholar 

  • Gundisch D, Koren AO, Horti AG, Pavlova OA, Kimes AS, Mukhin AG, London ED (2005) In vitro characterization of 6-[18F]fluoro-A-85380, a high-affinity ligand for alpha4beta2* nicotinic acetylcholine receptors. Synapse 55:89–97

    Article  PubMed  Google Scholar 

  • Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 24:782–789

    PubMed  CAS  Google Scholar 

  • Janz R, Sudhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24:687–700

    Article  PubMed  CAS  Google Scholar 

  • Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A (2006) PET imaging of cortical 11C–nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188:509–520

    Article  CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ (1995) Alzheimer disease, attention, and the cholinergic system. Alzheimer Dis Assoc Disord 9(Suppl 2):43–49

    PubMed  Google Scholar 

  • Lezak M (1995) Neuropsychological assessment, 3rd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Lundqvist H, Nordberg A, Hartvig P, Langstrom B (1998) (S)–(–)–[11C]nicotine binding assessed by PET: a dual tracer model evaluated in the rhesus monkey brain. Alzheimer Dis Assoc Disord 12:238–246

    Article  PubMed  CAS  Google Scholar 

  • Luria A (1966) Higher cortical functions in man. Basic Books, New York

    Google Scholar 

  • Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M (2001) Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 49:279–288

    Article  PubMed  CAS  Google Scholar 

  • Maziere M, Delforge J (1995) PET imaging [11C]nicotine: historical aspects. In: Domino E (ed) Brain imaging of nicotine and tobacco smoking. NPP Books, Ann Arbor, MI, pp 13–28

    Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  • Mega MS, Dinov ID, Porter V, Chow G, Reback E, Davoodi P, O’Connor SM, Carter MF, Amezcua H, Cummings JL (2005) Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose f 18 positron emission tomographic study. Arch Neurol 62:721–728

    Article  PubMed  Google Scholar 

  • Mogg AJ, Jones FA, Pullar IA, Sharples CG, Wonnacott S (2004) Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology 47:848–859

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A (1999) PET studies and cholinergic therapy in Alzheimer’s disease. Rev Neurol (Paris) 155(Suppl 4):S53–S63

    Google Scholar 

  • Nordberg A (2000) The effect of Cholinesterase Inhibitors studied with brain imaging. In: Giacobini E (ed) Cholinesterase and cholinesterase inhibitor. Martin Dunitz, London, pp 237–247

    Google Scholar 

  • Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A (2006) Visualization of nicotinic and muscarinic receptors in brain by positron emission tomography. In: Giacobini E, Pepeu G (eds) The brain cholinergic system in health and disease. Informa healthcare, London, pp 181–190

    Google Scholar 

  • Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, Andersson Y, Ulin J, Winblad B, Langstrom B (1990) Decreased uptake and binding of 11C–nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Parkinson’s Dis Dement Sect 2:215–224

    Article  CAS  Google Scholar 

  • Nordberg A, Alafuzoff I, Winblad B (1992a) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, Warpman U, Johansson M, Hellstrom-Lindahl E, Bjurling P et al (1992b) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13:747–758

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(–)11C–nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellstrom-Lindahi E, Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Amberla K, Shigeta M, Lundqvist H, Viitanen M, Hellstrom-Lindahl E, Johansson M, Andersson J, Hartvig P, Lilja A, Langstrom B, Winblad B (1998) Long-term tacrine treatment in three mild Alzheimer patients: effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis Assoc Disord 12:228–237

    Article  PubMed  CAS  Google Scholar 

  • Pabreza LA, Dhawan S, Kellar KJ (1991) [3H]cytisine binding to nicotinic cholinergic receptors in brain. Mol Pharmacol 39:9–12

    PubMed  CAS  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  PubMed  CAS  Google Scholar 

  • Potkin SG, Anand R, Fleming K, Alva G, Keator D, Carreon D, Messina J, Wu JC, Hartman R, Fallon JH (2001) Brain metabolic and clinical effects of rivastigmine in Alzheimer’s disease. Int J Neuropsychopharmacol 4:223–230

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24:790–798

    PubMed  CAS  Google Scholar 

  • Reid RT, Sabbagh MN (2003) Effects of donepezil treatment on rat nicotinic acetylcholine receptor levels in vivo and in vitro. J Alzheimer’s Dis 5:429–436

    CAS  Google Scholar 

  • Ringman JM, Cummings JL (2006) Current and emerging pharmacological treatment options for dementia. Behav Neurol 17:5–16

    PubMed  Google Scholar 

  • Robbins TW, McAlonan G, Muir JL, Everitt BJ (1997) Cognitive enhancers in theory and practice: studies of the cholinergic hypothesis of cognitive deficits in Alzheimer’s disease. Behav Brain Res 83:15–23

    Article  PubMed  CAS  Google Scholar 

  • Rosler M, Anand R, Cicin-Sain A, Gauthier S, Agid Y, Dal-Bianco P, Stahelin HB, Hartman R, Gharabawi M (1999) Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 318:633–638

    PubMed  CAS  Google Scholar 

  • Sahakian BJ, Owen AM, Morant NJ, Eagger SA, Boddington S, Crayton L, Crockford HA, Crooks M, Hill K, Levy R (1993) Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer’s disease: assessment of attentional and mnemonic function using CANTAB. Psychopharmacology (Berl) 110:395–401

    Article  CAS  Google Scholar 

  • Stefanova E, Wall A, Almkvist O, Nilsson A, Forsberg A, Langstrom B, Nordberg A (2006) Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer’s disease. J Neural Transm 113:205–218

    Article  PubMed  CAS  Google Scholar 

  • Svedberg MM, Svensson AL, Johnson M, Lee M, Cohen O, Court J, Soreq H, Perry E, Nordberg A (2002) Upregulation of neuronal nicotinic receptor subunits alpha4, beta2, and alpha7 in transgenic mice overexpressing human acetylcholinesterase. J Mol Neurosci 18:211–222

    Article  PubMed  CAS  Google Scholar 

  • Svedberg MM, Svensson AL, Bednar I, Nordberg A (2003) Neuronal nicotinic and muscarinic receptor subtypes at different ages of transgenic mice overexpressing human acetylcholinesterase. Neurosci Lett 340:148–152

    Article  PubMed  CAS  Google Scholar 

  • Svensson AL, Nordberg A (1997) Interaction of tacrine, galanthamine, NXX-066, and E2020 with neuronal a4β2 nicotinic receptors expressed in fibroblast cells. In: Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM (eds) Alzheimer’s disease biology, diagnosis and therapeutics. Wiley, Chichester, pp 751–756

    Google Scholar 

  • Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 99:1012–1016

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23:994–1005

    PubMed  CAS  Google Scholar 

  • Unger C, Svedberg MM, Yu WF, Hedberg MM, Nordberg A (2006) Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J Pharmacol Exp Ther 317:30–36

    Article  PubMed  CAS  Google Scholar 

  • Vellas B, Cunha L, Gertz HJ, De Deyn PP, Wesnes K, Hammond G, Schwalen S (2005) Early onset effects of galantamine treatment on attention in patients with Alzheimer’s disease. Curr Med Res Opin 21:1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14:167–186

    PubMed  CAS  Google Scholar 

  • Wechsler D (1981) Wechsler adult intelligence scale—revised manual. Psychological Corporation, New York

    Google Scholar 

  • Xie W, Stribley JA, Chatonnet A, Wilder PJ, Rizzino A, McComb RD, Taylor P, Hinrichs SH, Lockridge O (2000) Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J Pharmacol Exp Ther 293:896–902

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Swedish Medical Research Council (project no. 05817), Stiftelsen för Gamla Tjänarinnor, the KI foundation, Stohne’s foundation, Loo and Hans Osterman’s Foundation, and the Novartis Pharmaceuticals Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agneta Nordberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadir, A., Darreh-Shori, T., Almkvist, O. et al. Changes in brain 11C–nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology 191, 1005–1014 (2007). https://doi.org/10.1007/s00213-007-0725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0725-z

Keywords

Navigation